
www.manaraa.com

CISM International Centre for Mechanical Sciences 555
Courses and Lectures

Gaetan Kerschen Editor

Modal Analysis 
of Nonlinear 
Mechanical Systems 

International Centre
for Mechanical Sciences



www.manaraa.com

Series Editors:

The Rectors
Friedrich Pfeiffer - Munich

Franz G. Rammerstorfer - Wien
Elisabeth Guazzelli - Marseille

The Secretary General
Bernhard Schre  er - Padua

Executive Editor
Paolo Sera  ni - Udine

CISM Courses and Lectures

The series presents lecture notes, monographs, edited works and
proceedings in the  eld of Mechanics, Engineering, Computer Science

and Applied Mathematics.
Purpose of the series is to make known in the international scienti  c
and technical community results obtained in some of the activities

organized by CISM, the International Centre for Mechanical Sciences.



www.manaraa.com

International Centre for Mechanical Sciences

Courses and Lectures Vol. 555

For further volumes:
www.springer.com/series/76



www.manaraa.com

Gaetan Kerschen 
Editor

Modal Analysis of 
Nonlinear 
Mechanical Systems



www.manaraa.com

Editors

Gaetan Kerschen
University of Liège, Belgium

ISSN 0254-1971    
ISBN 978-3-7091-1790-3     ISBN 978-3-7091-1791-0 (eBook)
DOI 10.1007/ 978-3-7091-1791-0
Springer Wien Heidelberg New York Dordrecht London

© CISM, Udine 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole 
or part of the material is concerned, speci  cally the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on micro  lms or in any other physical 
way, and transmission or information storage and retrieval, electronic adaptation, computer 
software, or by similar or dissimilar methodology now known or hereafter developed. Ex-
empted from this legal reservation are brief excerpts in connection with reviews or scholarly 
analysis or material supplied speci  cally for the purpose of being entered and executed on 
a computer system, for exclusive use by the purchaser of the work. Duplication of this pub-
lication or parts thereof is permitted only under the provisions of the Copyright Law of the 
Publisher’s location, in its current version, and permission for use must always be obtained 
from Springer. Permissions for use may be obtained through RightsLink at the Copyright 
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this 
publication does not imply, even in the absence of a speci  c statement, that such names are 
exempt from the relevant protective laws and regulations and therefore free for general use.                                                                                 

While the advice and information in this book are believed to be true and accurate at 
the date of publication, neither the authors nor the editors nor the publisher can ac-
cept any legal responsibility for any errors or omissions that may be made. The publish-
er makes no warranty, express or implied, with respect to the material contained herein.

All contributions have been typeset by the authors
Printed in Italy

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



www.manaraa.com

PREFACE

This book contains lecture material from CISM course on Modal Anal-
ysis of Nonlinear Mechanical Systems, delivered in June 25-29, 2012.
The concept of normal modes is central in the theory of linear vibrat-
ing systems. Besides their obvious physical interpretation, the lin-
ear normal modes (LNMs) have interesting mathematical properties.
LNMs are therefore exploited routinely for various purposes including
experimental modal analysis, model reduction and structural health
monitoring. Clearly, nonlinearity is a frequent occurrence in engi-
neering applications and can take its origin from different sources in-
cluding contact, friction and large displacements. This is why the con-
cept of nonlinear normal modes (NNMs) was introduced in the 1960s
by Rosenberg. The course gives a complete and thorough overview
of NNMs, going from their definition and fundamental properties to
their applications in structural dynamics, which include model reduc-
tion, system identification and acoustic and vibration mitigation.

The first two chapters, by G. Kerschen and S.W. Shaw, intro-
duce the two different definitions of NNMs. Even though NNMs have
a clear conceptual relation to LNMs, it will be shown that they have
properties that are fundamentally different than those of linear modes.
Chapter 3, by C. Touzé, details a constructive technique for comput-
ing the NNMs of mechanical systems based on the theory of normal
forms. The usefulness of NNMs for the interpretation of nonlinear
phenomena and for model reduction of nonlinear systems is discussed.
Chapter 4, by O. Gendelman, analyses thoroughly the effect of damp-
ing on NNMs, which, in turn, allows to study targeted energy transfer
in coupled nonlinear oscillators. Chapters 5 and 6, by G. Kerschen
and B. Cochelin, address the numerical computation of NNMs using
algorithms that have the capability to deal with systems of high di-
mensionality in strongly nonlinear regimes of motion. Chapter 7, by
A.F. Vakakis, discusses the elements of a nonlinear system identifica-
tion methodology which integrates the concept of nonlinear modes with
slow flows and signal processing. Finally, Chapter 8, by B. Cochelin,
revisits targeted energy transfer with application to acoustic mitiga-
tion.

Gaëtan Kerschen, Liège, 2014
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Definition and Fundamental Properties of
Nonlinear Normal Modes

G. Kerschen

Department of Aerospace and Mechanical Engineering

University of Liège

Liège, Belgium

1 A Brief Historical Perspective

The concept of a normal mode is central in the theory of linear vibrating
systems. Besides their obvious physical interpretation, the linear normal
modes (LNMs) have interesting mathematical properties. They can be used
to decouple the governing equations of motion; i.e., a linear system vibrates
as if it were made of independent oscillators governed by the eigensolutions.
Two important properties that directly result from this decoupling are:

1. Invariance: if the motion is initiated on one specific LNM, the re-
maining LNMs remain quiescent for all time.

2. Modal superposition: free and forced oscillations can conveniently be
expressed as linear combinations of individual LNM motions.

In addition, LNMs are relevant dynamical features that can be exploited for
various purposes including model reduction (e.g., substructuring techniques,
experimental modal analysis, finite element model updating and structural
health monitoring.

Clearly, though, linearity is an idealization, an exception to the rule;
nonlinearity is a frequent occurrence in real-life applications. Any attempt
to apply traditional linear analysis to nonlinear systems results, at best, in a
suboptimal design. Thus, there is a need for efficient, analytically rigorous,
broadly applicable analysis techniques for nonlinear structural dynamics. In
this context, nonlinear normal modes (NNMs) offer a solid theoretical and
mathematical tool for interpreting a wide class of nonlinear dynamical phe-
nomena, yet they have a clear and simple conceptual relation to the LNMs,
with which practicing structural engineers are familiar. Other appealing fea-
tures of the NNMs are that they are capable of handling strong structural
nonlinearity and that they have the potential to address the individualistic
nature of nonlinear systems.

G. Kerschen (Ed.), Modal Analysis of Nonlinear Mechanical Systems, CISM International 
Centre for Mechanical Sciences DOI 10.1007/ 978-3-7091-1791-0_1 © CISM Udine 2014
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The most straightforward definition of an NNM is a vibration in unison
of the system (i.e., a synchronous oscillation). NNMs were pioneered in
the 1960s thanks to the seminal work of Rosenberg (1). They were further
studied in the 1970s by Rand (2; 3; 4) and Manevitch and Mikhlin (5).
They were given a new impetus in the 1990s through the efforts of Vakakis
et al. (6; 7; 8; 9; 10; 11) and Shaw and Pierre (12; 13; 14; 15). Since then, a
large body of literature has addressed, with notable success, the qualitative
and quantitative analysis of nonlinear phenomena using NNMs (see, e.g.,
(16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34;
35; 36; 37)). For a few typical applications and comprehensive reviews, the
reader can refer to (10; 11; 38; 39; 40; 41).

The objective of the present chapter is to describe and to illustrate in
a simple manner the fundamental properties of NNMs. The chapter is
organized as follows. In the next section, the two main definitions of NNMs
are provided. In addition, their fundamental properties are described, and
their representation in a frequency-energy plot is introduced. In Section 3,
the different means of computing the NNMs are reviewed and assessed. The
application of NNMs to ‘linear’ and nonlinear modal analysis is then briefly
discussed in Section 4.

2 Nonlinear Normal Modes: What Are They ?

The free response of discrete mechanical systems is considered herein, as-
suming that continuous systems have been spatially discretized using, e.g.,
the finite element method. The equations of motion are

Mẍ(t) +Kx(t) + fnl {x(t), ẋ(t)} = 0 (1)

where M is the mass matrix; K is the stiffness matrix; x, ẋ and ẍ are
the displacement, velocity and acceleration vectors, respectively; fnl is the
nonlinear restoring force vector, assumed to be regular.

To illustrate the different concepts, a two-degree-of-freedom (2DOF) sys-
tem with a cubic stiffness is chosen. The system is depicted in Figure 1,
and its motion is governed by the equations

ẍ1 + (2x1 − x2) + 0.5 x3
1 = 0

ẍ2 + (2x2 − x1) = 0 (2)

For comparison purposes, the underlying linear system

ẍ1 + (2x1 − x2) = 0

ẍ2 + (2x2 − x1) = 0 (3)
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is also considered in this study. The time series corresponding to in-phase
and out-of-phase normal mode motions of the linear system (3) are depicted
in Figure 2. Motion in the configuration space (i.e., in the plane of the
displacements x1(t) and x2(t)) is given in Figure 3. Obviously, LNMmotions
correspond to straight lines in this plane.

2.1 Definition of a Nonlinear Normal Mode

There exist two main definitions of the NNMs in the literature, due to
Rosenberg (1) and Shaw and Pierre (12; 13; 14; 15). There have been
additional definitions, which include a complex-valued invariant manifold
formulation (42; 43) and group theoretic definitions (10), but they are not
described herein.

Rosenberg’s Definition

During the normal mode motion of a linear conservative system, each system
component moves with the same frequency and with a fixed ratio amongst
the displacements of the components. Targeting a straightforward nonlinear
extension of the LNM concept, Rosenberg defined an NNM as a vibration
in unison of the system (i.e., a synchronous oscillation). This definition
requires that all material points of the system reach their extreme values
and pass through zero simultaneously and allows all displacements to be
expressed in terms of a single reference displacement.

For illustration, the time series and the configuration space of in-phase
and out-of-phase NNM motions during the free response of system (2) are
depicted in Figures 4 and 5, respectively. The modal lines of this nonlin-
ear system are curves, resulting from the nonlinear relationship between
the coordinates during the periodic motion. These curved NNMs, termed
nonsimilar NNMs by Rosenberg, are generic in nonlinear systems, and their
existence certainly complicates the concept of orthogonality between modes
(44; 45). As discussed in Section 2.2, a particular feature of these NNMs is
that their shape depends on the total energy present in the system. When
special spatial symmetries exist, the NNMs may degenerate into (energy-
invariant) straight modal lines, as in the linear case (see (7) and Section
2.2).

Rosenberg’s definition may appear restrictive in two cases:
1. This definition, as such, cannot be easily extended to nonconservative

systems.

2. In the presence of internal resonances (i.e., when two or more NNMs
interact), some coordinates may have a dominant frequency compo-
nent different than that of the other coordinates (e.g., some coordi-
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nates may vibrate faster than others). In this case, the system no
longer vibrates in unison. This is illustrated in Figure 6 for an inter-
nally resonant NNM (3:1 internal resonance) of system (2).

However, these two limitations can be circumvented. Firstly, as shown
in Section 4.2 and in (26; 33), the damped dynamics can often be inter-
preted based on the topological structure and bifurcations of the NNMs
of the underlying undamped system. Secondly, realizing that the motion is
still periodic in the presence of internal resonances, Rosenberg’s definition of
an NNM can be extended to a (non-necessarily synchronous) periodic mo-
tion of the system. This extended definition is particularly attractive when
targeting a numerical computation of the NNMs. It enables the nonlinear
modes to be effectively computed using algorithms for the continuation of
periodic solutions, which are really quite sophisticated and advanced.

The Invariant Manifold Approach

Shaw and Pierre proposed a generalization of Rosenberg’s definition that
provides a direct and elegant extension of the NNM concept to damped
systems. Based on geometric arguments and inspired by the center manifold
technique, they defined an NNM as a two-dimensional invariant manifold
in phase space. Such a manifold is invariant under the flow (i.e., orbits
that start out in the manifold remain in it for all time), which extends the
invariance property of LNMs to nonlinear systems. In order to parameterize
the manifold, a single pair of state variables (i.e., both the displacement and
the velocity) are chosen as master coordinates, the remaining variables being
functionally related to the chosen pair. Therefore, the system behaves like
a nonlinear single-DOF system on the manifold.

Geometrically, LNMs are represented by planes in phase space, and
NNMs are two-dimensional surfaces that are tangent to them at the equi-
librium point. For illustration, the manifolds corresponding to in-phase and
out-of-phase NNMs motions of system (2) are given in Figure 7.

2.2 Fundamental Properties

NNMs have intrinsic properties that are fundamentally different from
those of LNMs. They are reviewed and illustrated in what follows.

Frequency-Energy Dependence

One typical dynamical feature of nonlinear systems is the frequency-energy
dependence of their oscillations. One important consequence is that the
frequency response functions (FRFs) of nonlinear systems are no longer



www.manaraa.com

Definition and Fundamental Properties of Nonlinear Normal Modes 5

invariant. For illustration, the FRFs of system

ẍ1 + (0.02ẋ1 − 0.01ẋ2) + (2x1 − x2) + 0.5 x3
1 = F cosωt

ẍ2 + (0.02ẋ2 − 0.01ẋ1) + (2x2 − x1) = 0 (4)

are depicted in Figures 8 and 9 for F varying between 0.002N and 0.2N.
The modal curves and frequencies of oscillation of NNMs also depend

on the total energy in the system. In contrast to linear theory, this energy
dependence prevents the direct separation of space and time in the governing
equations of motion, which complicates the analytical calculation of the
NNMs.

Returning to the undamped system (2), Figure 10 shows the time se-
ries, the configuration space, the power spectral density (PSD) and two-
dimensional projections of the phase space of three in-phase NNM motions
of increasing energies. The NNM motion at low energy resembles that of
the in-phase LNM of the underlying linear system (3). The modal curve
is a straight line, there is one main harmonic component in the system
response, and the motion in phase space is a circle. For the motion at mod-
erate energy, the NNM is now a curve, and the presence of two harmonic
components can be detected. A clear departure from the LNM (harmonic)
motion is observed. At high energy, this is even more enhanced. For in-
stance, the motion in phase space is a strongly deformed ellipse. When
moving from the low- to the high-energy NNM, the period of the motion
decreases from 6.28 s to 4.755 s. This is due to the hardening characteristic
of the cubic spring. Another noticeable characteristic of the NNMs is that
the modes at higher energies are not the geometric continuation of those at
lower energies.

To further illustrate the frequency-energy dependence of the NNMs, the
harmonic balance method can be applied to system (2). This method ex-
presses the periodic motion of a system by means of a finite Fourier series
(46). For simplicity, a series with a single harmonic component is considered

x1(t) = A cosωt, x2(t) = B cosωt (5)

This ansatz is plugged into the equations of motion (2). Expanding cos3 ωt
in terms of cosωt and cos 3ωt, and balancing all the coefficients of the cosωt
terms yields

−Aω2 + (2A−B) + 0.5
3A3

4
= 0

−Bω2 + (2B −A) = 0 (6)
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Analytic expressions for coefficients A and B are then readily obtained

A = ±
√

8(ω2 − 3)(ω2 − 1)

3(ω2 − 2)
(7)

B =
A

2− ω2
(8)

The square root exists in the two frequency intervals

ω1 ∈ [1,
√
2[ and ω2 ∈ [

√
3,+∞[ (9)

noting that ω = 1 rad/s and ω =
√
3 rad/s are the two natural frequencies of

the underlying linear system (3). In the first (second) frequency interval, B
has the same (opposite) sign as A; an in-phase (out-of-phase) NNM motion
is observed for initial conditions [x1(0) x2(0) ẋ1(0) ẋ2(0)] = [A B 0 0]).

The (conserved) total energy during the free response of system (2) is

Total Energy =
A2

2
+

(B −A)2

2
+

B2

2
+ 0.5

A4

4
(10)

which, according to equations (7) and (8), demonstrates the frequency-
energy dependence of NNM motions.

An appropriate graphical depiction of the NNMs is key to their exploita-
tion. The usual representation in the literature is to plot the motion ampli-
tude at a particular DOF as a function of frequency. Due to the frequency-
energy dependence, the representation of NNMs in a frequency-energy plot
(FEP) is particularly convenient (26; 33). An NNM is represented by a
point in the FEP, which is drawn at a frequency corresponding to the min-
imal period of the periodic motion and at an energy equal to the conserved
total energy during the motion. A branch, represented by a solid line, is a
family of NNM motions possessing the same qualitative features (e.g., the
in-phase NNM motions of a 2DOF system).

As a point of comparison, the FEP of the linear system (3) is shown in
Figure 11. Because the natural frequencies do not depend on energy, this
FEP comprises two horizontal lines at the two resonant frequencies of the
system. The LNM motions represented in the configuration space are inset
and are obviously unaltered by the energy level.

The FEP of the nonlinear system (2) was computed using the method
proposed in Chapter 5 and is shown in Figure 12. The backbone of the
plot is formed by two branches, which represent in-phase (S11+) and out-
of-phase (S11−) synchronous NNMs. The letter S refers to symmetric
periodic solutions for which the displacements and velocities of the system
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at half period are equal but with an opposite sign to those at time t = 0.
As shown in the next section, unsymmetric periodic solutions may also be
encountered and are denoted by a letter U . The indices in the notations
are used to mention that the two masses vibrate with the same dominant
frequency. The FEP clearly shows that the nonlinear modal parameters
have a strong dependence on the total energy in the system:

1. The frequency of both the in-phase and out-of-phase NNMs increases
with the energy level, which reveals the hardening characteristic of
the system.

2. The modal curves change for increasing energies. The in-phase NNM
tends to localize to the second DOF (i.e., it resembles a vertical curve),
whereas the out-of-phase NNM localizes to the first DOF (i.e., it re-
sembles an horizontal curve). This localization property is a key fea-
ture of nonlinear systems and is discussed extensively in (10). It is
also exploited for vibration mitigation in (26; 33; 47; 48).

The comparison between Figures 11 and 12 also reveals that NNMs have
a clear and simple conceptual relation to the LNMs.

Modal Interactions — Internally Resonant Nonlinear Normal

Modes

Another salient feature of nonlinear systems is that NNMs may interact dur-
ing a general motion of the system. Nonlinear modal interactions have been
studied extensively in the literature (see, e.g., the monograph (38)). A case
of particular interest is when the linear natural frequencies are commensu-
rate or nearly commensurate (44; 49; 50; 51). An energy exchange between
the different modes involved may therefore be observed during the inter-
nal resonance. For instance, exciting a high-frequency mode may produce
a large-amplitude response in a low-frequency mode. Vibration absorbers
exploiting these energy transfers have been studied in (52).

Internally resonant NNMs have no counterpart in linear systems and
are generated through bifurcations. Considering system (2) and according
to the discussion in the previous section, the FEP in Figure 12 does not
seem to feature internally resonant NNMs. However, when carrying out the
NNM computation at higher energy levels, Figure 13 shows that another
branch of periodic solutions, termed a tongue, emanates from the backbone
branch S11+. On this tongue, denoted S31, there is a 3:1 internal resonance
between the in-phase and out-of-phase NNMs.

Surprisingly, the ratio of the linear natural frequencies of system (2) is√
3. Due to energy dependence, a 3:1 ratio between the two frequencies can

still be realized, because the frequency of the in-phase NNM increases less
rapidly than that of the out-of-phase NNM. This clearly shows that NNMs
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can be internally resonant without necessarily having commensurate linear
natural frequencies, a feature that is rarely discussed in the literature. This
also underlines that important nonlinear phenomena can be missed when
resorting to perturbation techniques, which are limited to small-amplitude
motions.

There exists a smooth transition from S11+ to S11− that occurs on
tongue S31. This transition is depicted in Figure 14 where the evolution of
the configuration space and of the Fourier coefficients is shown for several
points on S31 or in its vicinity. Starting from NNM (a), an in-phase motion
characterized by two perceptible harmonic components is observed. From
(a) to (d), the relative importance of the third harmonics grows, as clearly
confirmed by the motion in the configuration space. Moving from (d) to
(e) corresponds to a drastic qualitative change in the dynamics. Firstly, the
first harmonics has completely disappeared for both oscillators. Secondly,
the signs of the coefficients of the third harmonics are opposite. Overall,
this means that an out-of phase motion with a three times as large fre-
quency is realized. Eventually, through a 3:1 internal resonance, the motion
ends up on S33− or, equivalently, on S11−. From (f) to (h), the relative
importance of the third harmonics diminishes, and a motion qualitatively
similar to that at (a) is observed. However, the configuration space of NNM
(h) reveals the presence of a fifth harmonics, which is a precursor to the
gradual development of tongue S51.

This indicates that other resonance scenarios exist in this seemingly sim-
ple system. The frequency of the in-phase NNM motions on S11− steadily
increases for increasing energies, whereas the NNM motions on S11+ have
their frequency asymptotically approaching a value close to

√
3 rad/s. Fol-

lowing this reasoning, we expect the existence of a countable infinity of in-
ternal resonance cases (e.g., 2:1, 4:1, 5:1, etc.). To confirm this conjecture,
additional tongues have been computed numerically and are represented
in Figure 15. These tongues emanate from S11+ and coalesce into S11−
following a mechanism similar to that described above (Figure 14). To il-
lustrate the rich dynamics, a few representative NNMs of system (2) are
depicted in Figure 16. Such a complex dynamics was first observed in (26)
for a system with an essential nonlinearity. It is interesting that this can
also be reproduced for more generic nonlinear systems.

Mode Bifurcations and Stability

A third fundamental property of NNMs is that their number may exceed the
number of DOFs of the system. Due to mode bifurcations, not all NNMs
can be regarded as nonlinear continuation of normal modes of linear systems
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(10; 53; 54). Internally resonant NNMs are one example. Another possible
example corresponds to the NNM bifurcations of the system

ẍ1 + x1 + x3
1 +K(x1 − x2)

3 = 0

ẍ2 + x2 + x3
2 +K(x2 − x1)

3 = 0 (11)

for variations of the coupling spring K (7). This system possesses simi-
lar NNMs that obey to the relation x2(t) = cx1(t). Eliminating x2 from
equations (11) yields

ẍ1 + x1 +
[
1 +K(1− c)3

]
x3
1 = 0

ẍ1 + x1 − 1

c

[
K(1− c)3 + c3

]
x3
1 = 0 (12)

Because both equations must lead to the same solution, it follows

K(1 + c)(c− 1)3 = c(1− c2), c �= 0 (13)

Equation (13) means that system (11) always possesses two modes charac-
terized by c = ±1 that are direct extension of the LNMs. However, this
system can possess two additional similar NNMs that cannot be captured
using linearization procedures. At K = 0.25, these NNMs bifurcate from
the out-of-phase mode, as shown in Figure 17.

Another important characteristic of NNMs is that they can be stable or
unstable, which is in contrast to linear theory where all modes are neutrally
stable. In this context, instability means that small perturbations of the ini-
tial conditions that generate the NNM motion lead to the elimination of the
mode oscillation. Therefore, unstable NNMs are not physically realizable.
The NNM stability analysis can be performed numerically or analytically.
In Figure 18, stability is computed numerically through the eigenvalues of
the monodromy matrix. In other studies, analytical results are obtained
through Floquet theory after adding small perturbations to the periodic so-
lutions. For a detailed stability analysis of the NNMs, the reader can refer
to (7; 9; 10; 55; 56).

Bifurcations and stability are interrelated concepts, because a change in
stability occurs through a bifurcation. For instance, the bifurcation in sys-
tem (11) generates a pair of stable/unstable NNMs (Figure 17). Returning
to system (2), another illustration of NNM stability is shown in the FEP
of Figure 18. When the tongue U21 bifurcates from S11+, the NNMs on
this latter branch lose stability. A detailed description of this tongue and
the related dynamical mechanisms (e.g., symmetry-breaking bifurcation) is
beyond the scope of this paper. This figure also shows that stability can be
lost when a turning point is encountered.
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3 Nonlinear Normal Modes: How to Compute

Them ?

Different methods for computing NNMs of discrete and continuous systems
are briefly described in this section. They are classified in two categories, ac-
cording to whether the computation relies on analytical or numerical meth-
ods. This discussion is by no means a comprehensive overview of the past
and current approaches and focuses on the free response of nonlinear vi-
brating systems. There is no attempt to summarize the methods dealing
with the forced response case.

3.1 Analytical Techniques

Rosenberg was the first to develop constructive techniques for computing
NNMs of discrete conservative oscillators. Rand obtained explicit approxi-
mate expressions for modal curves in 2DOF systems by applying a pertur-
bation method to a modal equation (3). Manevitch and Mikhlin reduced
the problem of computing nonsimilar NNMs to a set of singular boundary
value problems, which were then solved using power series expansions (5).
The book by Vakakis et al. (10) summarizes the developments until the
1990s.

The early 1990s witnessed a resurgence of interest in the NNMs with the
works of Vakakis (6; 7; 8; 9) and Shaw and Pierre (12; 13; 14; 15). Simple
discrete systems were first studied (8; 12; 14), but the generalization to
continuous systems (9; 15) soon followed. For continuous systems, two main
approaches exist in the literature. The first approach is to study directly
the original partial differential equations (9; 15). An alternative method is
to discretize the governing nonlinear partial differential equations into an
infinite set of ordinary differential equations that is truncated to a finite
number of equations (13). The two alternatives are compared in (57) using
the invariant manifold approach.

An Energy-Based Formulation

This formulation relies on Rosenberg’s work (1) and expresses an NNM
as a modal curve in the configuration space. It was further developed by
Manevitch and Mikhlin for discrete conservative oscillators (5) and exploited
in a few other studies (8; 10). To illustrate the method, it is applied to
system (2)

ẍ1 + (2x1 − x2) + 0.5 x3
1 = 0

ẍ2 + (2x2 − x1) = 0 (14)
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When the system vibrates along an NNM, the displacement x2 is linked to
x1 through the expression of the modal curve x̂2

x2 = x̂2(x1) (15)

The objective of the method is to eliminate the time derivatives from the
equations of motion (14). To compute the second time derivative of x2,
relation (15) is differentiated twice using the chain rule

ẍ2 = x̂′′

2 ẋ
2
1 + x̂′

2ẍ1 (16)

where prime denotes differentiation with respect to x1. This expression
involves the second time derivative of x1, which is readily obtained from
the equations of motion

ẍ1 = −2x1 + x̂2 − 0.5x3
1 (17)

It then remains to compute the first time derivative of x1 appearing in
equation (16). To this end, a first integral of motion expressing explicitly the
conservation of energy during the motion is written by multiplying equation
(17) by ẋ1 and integrating

ẋ2
1 = 2

∫
ẋ1

0

ẋ1 dẋ1 = −2
∫

x1

X1

[
2u− x̂2(u) + 0.5u3

]
du (18)

where X1 is the maximum amplitude attained by x1; i.e., when ẋ1 = 0. The
derivatives are substituted into the second of equations (14), which yields
the equation governing the modal curve:

x̂′′

2

{
−2

∫ x1

X1

[
2u− x̂2(u) + 0.5u3

]
du

}
+ x̂′

2

[−2x1 + x̂2 − 0.5x3
1

]
+(2x̂2 − x1) = 0

(19)

Because the coefficient of the highest derivative vanishes when x1 = X1,
this functional equation is singular at the maximum equipotential surface.
It must therefore be supplemented by a boundary condition{

x̂′

2

[−2x1 + x̂2 − 0.5x3
1

]
+ (2x̂2 − x1)

}
x1=X1

= 0 (20)

which expresses that the nonlinear mode intersects orthogonally the maxi-
mum equipotential surface in the configuration space. Equation (19) does
not depend on the time variable, and its solution is amenable to a power
series expansion:

x̂2(x1) = x̂
(0)
2 (x1) + εx̂

(1)
2 (x1) + ε2x̂

(2)
2 (x1) +O(ε3) (21)
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This formulation was extended to undamped continuous systems in (9).
The displacement of any point of the system is expressed in terms of a single
reference displacement x0(t) = x(s0, t) by the functional relation

x(s, t) = X [s, x0(t)] (22)

where s is the spatial coordinate, and X is a modal function characterizing
the considered NNM. Then, an integral equation expressing the conservation
of energy during the motion is used in conjunction with equation (22) to
eliminate the time derivatives from the equations of motion. Eventually, the
equation governing the modal function X is obtained and is solved using
power series.

In the presence of internal resonances, the folding of the NNMs in the
configuration space may result in multivalued relationship among the var-
ious coordinates (see Figure 6). This has been nicely addressed in (51) by
considering NNMs in an appropriately defined modal space.

The Invariant Manifold Approach

The invariant manifold approach (12; 13; 14; 15) is similar in spirit to the
energy-based formulation and is described in detail in the next chapter. The
difference with the previous approach is that a pair of state variables (i.e.,
both the displacement and the velocity) are chosen as master coordinates,
the remaining variables being functionally related to the chosen pair:

x(s, t) = X1 [s, x0(t), ẋ0(t)] and ẋ(s, t) = X2 [s, x0(t), ẋ0(t)] (23)

These relations define a two-dimensional invariant manifold in phase space.
By taking the time derivative of these constraint equations and using the
chain rule differentiation, the explicit time dependence from the equations
of motion can be eliminated. Eventually, this yields a set of partial differen-
tial equations governing the modal functions X1 and X2. These equations
are as difficult to solve as the original problem, but the solution can be
approximated using power series.

For systems with internal resonances, a multi-mode invariant manifold
is considered in (49) to account for the influence of several modes. For
instance, when two modes are resonant, the master coordinates comprise
two pairs of state variables, and the resulting invariant manifold is four-
dimensional. The invariant manifold approach was also reformulated using a
complex framework (42), which was then extended to systems with internal
resonances (43).
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The Multiple Scales Method

One perturbation method that has received considerable attention for the
NNM computation is the method of multiple scales (24; 76; 42; 44; 45; 58;
59). Governing partial differential equations can be attacked directly (i.e.,
without spatial discretization) with this method. The first step is to intro-
duce a small nondimensional parameter ε to indicate the smallness of the
nonlinear terms. The solution is then sought in the form of an asymptotic
expansion (46).

The underlying idea of the multiple scales method is to consider ex-
pansions in terms of multiple independent time scales, instead of a single
independent variable t

x(s, t) = εx1(s, T0, T1, T2, ...) + ε2x2(s, T0, T1, T2, ...) + ... with Ti = εit

(24)
where T0 is a time scale characterizing the fast motion of the system (i.e.,
the motion occurring at the dominant frequency of the NNM). Because the
generic motion of a nonlinear system is not harmonic, other time scales are
necessary to describe the motion; these are the slow time scales T1, T2, ....
An increasingly accurate approximation is therefore obtained as additional
time scales enter in the analysis. The approximating functions xi(s, T0, T1,

T2, ...) are then determined after integration of ordinary linear differential
equations for each order of ε, and imposition of solvability conditions, which
correspond to the elimination of secular terms.

Other Approaches

The method of normal forms was first employed by Lamarque and Jezequel
(16) and Nayfeh (60) using a complex formulation. A real normal theory
for the NNM computation was then proposed in (61; 62) for conservative
systems and in (32) for nonconservative systems and is described in detail in
Chapter 3 of this book. The philosophy of the method is to seek a nonlinear
change of coordinates 1 that brings the equations of motion into the simplest
possible form, termed the normal form. In other words, the objective of the
method is to eliminate as many as possible of the nonlinear terms from
the governing equations, which is similar in spirit to the decoupling of the
equations of motion provided by the LNMs of a linear system. However, a
complete decoupling of the equations is generally not possible for nonlinear
systems, and only the invariance property can be enforced. Eventually, the

1To recover the linear results at small-amplitude motions, the applied coordinate trans-

formations must be near-identity. As a result, the method can only be used in the

neighborhood of an equilibrium point.
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computed normal form dictates the dynamics of the system on the invariant
manifold.

Another technique that assumes that the NNM motion is periodic in
time and approximates it by means of a finite Fourier series is the harmonic
balance method; e.g.,

x(s, t) =

N∑
n=0

φn

1 (s) cosnωt+

N∑
n=0

φn

2 (s) sinnωt (25)

By substituting this relation into the governing equations of motion and
‘balancing the harmonics’, the nonlinear modes can be computed by solving
nonlinear boundary value problems for the φn (63; 64; 65; 66; 67; 68; 69; 70).
Because analytical solutions are available in a limited number of cases
(mostly when a single harmonic component is considered; see Section 2.2),
numerical methods are often used to solve the resulting equations. The har-
monic balance method can therefore be viewed as a semi-analytical tech-
nique.

A method similar in spirit to the harmonic balance method and to the
Galerkin-based approach was introduced in (34; 71). The most distinctive
feature of this formulation is that the modal vector and the corresponding
frequency depend on the amplitude but also on the total phase variable. The
dynamics is defined by a one-dimensional differential equation, governing
the total phase motion, from which the period of the oscillations is deduced.

3.2 Numerical Techniques

Most existing constructive techniques for computing NNMs are based on
asymptotic approaches. Despite that robust algorithms for the computation
of isolated periodic orbits and for the continuation of a family of orbits have
been developed, it is somewhat surprising that there have been few attempts
to compute NNMs using numerical methods (26; 72; 73; 74; 75; 76; 77).

One of the first approaches was proposed by Slater in (72). Based on
Rosenberg’s definition, the procedure integrates directly the governing equa-
tions of motion over one period using numerical algorithms (e.g, Runge-
Kutta and Newmark). It comprises two steps:

1. An isolated periodic solution corresponding to a specific energy level
is computed by modifying iteratively the initial conditions governing
the free response of the system. This is carried out using optimization
algorithms that minimize a periodicity condition (i.e., a cost function
representing the lack of periodicity of the current iterate).

2. Low-energy modal curves and the corresponding periods of oscillation
are first computed, taking the normal modes and natural frequencies
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of the underlying linear system as initial guesses. The energy is then
gradually increased with the previously computed NNM as an initial
guess for the next NNM.

This step-wise type of continuation of periodic solutions is called sequential
continuation (78). Similarly, shooting algorithms coupled with sequential
continuation were considered in Lee et al. (26; 79) and Bajaj et al. (76; 80)
to numerically solve the nonlinear boundary value problem that defines a
family of NNM motions.

A more sophisticated continuation method is the so-called asymptotic-
numerical method (81), described in Chapter 6. It is a semi-analytical
technique that is based on a power series expansion of the unknowns param-
eterized by a control parameter. It is utilized to follow the NNM branches in
conjunction with the harmonic balance method in (69) or with finite differ-
ence methods in (75; 82). Another well-established method implemented in
the AUTO software is the pseudo-arclength continuation. It is the approach
used for the NNM calculation in (83) and is also described in Chapter 5.

Based on the invariant manifold approach, Pesheck et al. (73; 84) de-
veloped a meaningful numerical extension of it. In the original formulation,
the master variables are the position and velocity in Cartesian coordinates,
and the solution is sought using a polynomial expansion. In the proposed
Galerkin-based approach, an alternative set of coordinates is defined (i.e.,
the amplitude and phase of the considered mode), and the polynomial ap-
proach is replaced by a Galerkin method. Eventually, a set of nonlinear
algebraic equations is obtained and solved using local optimization algo-
rithms.

Finally, we note that computer implementation of both the multiple
scales and the invariant manifold approach have been carried out in (58; 86)
and applied to finite element models of planar frames and beams.

3.3 Assessment of the Different Methodologies

Analytical methodologies have the advantage that NNMs can be con-
structed symbolically, which is useful for gaining insight into the dynamics
and for performing parametric studies. Among other things, they clearly
highlight the frequency-energy dependence of the NNMs. The fundamental
drawbacks of these techniques is that (i) they are quite analytically involved
and require a careful treatment in the presence of internal resonances; (ii)
the resultant dynamics are only accurate for small-amplitude motions; and
(iii) the upper bound for these motions is not known a priori.

The energy-based formulation is an elegant approach, but, because it
is based on symmetry arguments, it requires that the nonlinearities be of
odd order. It is also a priori limited to undamped systems. The invariant
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manifold approach does not present these limitations. However, though its
basic definition allows for large-amplitude motions, the constructive tech-
nique, which relies on power series expansions, is limited to small motions.
Regarding perturbation analysis (e.g., the multiple scales method), it can
now be performed using symbolic manipulation programs, but their appli-
cation to nonlinear systems with more than a few DOFs remains involved.
Different analytical methods have been compared in (60; 80), and the re-
sults obtained were consistent. In (60), the author reports that the method
of multiple scales is the simplest and involves the least algebra. Finally, we
note that the harmonic balance method yields solutions which are generally
valid over a much larger domain compared to the aforementioned method-
ologies. However, because analytic expressions of the resulting equations
are available only in a limited number of cases, it should be regarded more
as a numerical technique.

Analytical approaches may become inaccurate in the moderate to strongly
nonlinear range of motion and are limited to systems with low dimension-
ality. In this context, numerical methods have certainly the potential to
make nonlinear modal analysis more accessible to the practicing structural
engineer. The key advantage of these methods is that they lend themselves
fairly easily to strongly nonlinear systems with large-amplitude motions,
which is nicely evidenced in (84; 85). In addition, most of them provide an
exact solution to the NNM calculation. Their fundamental drawback is that
they rely on extensive numerical simulations and are still computationally
intensive.

The Galerkin-based invariant manifold approach is one of the most ef-
fective techniques for building reduced-order models of nonlinear vibrating
systems. It can be applied to a large variety of nonlinear dynamic systems,
including nonconservative, gyroscopic and piecewise-linear systems, with an
accuracy controlled over the chosen amplitude range. One possible limita-
tion is that the interpretation of the NNMs is complicated when multi-mode
invariant manifolds, which are higher-dimensional surfaces, are computed.

On the contrary, a particularly appealing feature of the continuation
of periodic solutions is that the resulting NNMs have a clear conceptual
relation to the LNMs, with which practicing structural engineers are famil-
iar (see section 2.2). As discussed in Section 4.2, this makes it a promising
technique for developing a practical nonlinear analog of experimental modal
analysis, which is well-established for linear systems. In this framework, the
implementation of sequential continuation techniques is truly straightfor-
ward, and the calculations can be performed with limited user interaction.
They represent the ideal starting point for the dynamicist not necessarily
acquainted with the numerical calculation of the NNMs. However, their
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computational efficiency is limited, and they are likely to fail when a turn-
ing point or a bifurcation is encountered. Effective alternatives are those
based on more sophisticated continuation techniques (e.g., the asymptotic-
numerical method and the pseudo-arclength continuation). For instance,
the NNMs of a real-life aircraft are computed in (87). One limitation of
the continuation of periodic solutions is that it is not clear how they can be
extended to nonconservative systems. Nevertheless, as shown in Section 4.2,
the damped dynamics can be interpreted based on the topological structure
and bifurcations of the NNMs of the underlying undamped system.

4 Nonlinear Normal Modes: Why Are They Useful ?

The objective of this section is to illustrate the usefulness of NNMs for
modal analysis. Nonlinear model reduction and the study of localization
phenomena are also discussed later in this book.

4.1 ‘Linear’ Modal Analysis

Modal analysis and testing of linear mechanical structures has been de-
veloped over the past 40-50 years, and the techniques available today are
mature and advanced. Clearly, though, linearity is an idealization, an excep-
tion to the rule; nonlinearity is a frequent occurrence in real-life applications.
In the presence of nonlinear phenomena, the structural dynamicist should
therefore ask the question: can I still use the linear modes ? Obviously, the
answer depends on the type of the nonlinearity and on the excitation level.

In this context, the computation of the NNMs and their representation
in a FEP is a robust tool to decide whether or not the linear framework
is still applicable. It can be used to determine which modes (and to what
extent) are sensitive to the nonlinearity. Going back to Figure 12, it is clear
that, until an energy of 10−1, the mode shapes and natural frequencies are
unaffected by the nonlinearity and can safely be used. Beyond this critical
energy level, both the in-phase and out-of-phase modes show a significant
departure from the LNMs and become dependent on the total energy in the
system.

4.2 Nonlinear Modal Analysis

When it is certain that the system is excited in the nonlinear range,
the linear framework should be abandoned in favor of a nonlinear modal
analysis.

Considering again system (2) as a first example, its FEP in Figure 12
greatly helps to understand how the modal curves deform under the action
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of the nonlinearity. The in-phase NNM tends to localize to the second
DOF, whereas the out-of-phase NNM localizes to the first DOF. Regarding
the corresponding frequency of oscillation, both modes are characterized by
a hardening behavior due to the presence of the cubic spring.

As a second example, a planar cantilever beam discretized by 20 finite
elements and with a cubic spring at the free end is now considered. This
models a real nonlinear beam that was used as a benchmark for nonlinear
system identification during the European action COST F3 (88). The first
two modes are plotted in the FEPs of Figures 19 and 20, respectively. Con-
sidering the same energy level, the first modal curve seems somewhat more
affected by the nonlinearity compared to the second modal curve. Their
frequencies of oscillation undergo a strong increase with increasing energy
levels. The FEPs also highlight the presence of two tongues, revealing the
existence of internal resonances. The tongue in Figure 19 corresponds to
a 5:1 internal resonance between the first and second modes of the beam.
When the energy gradually increases along the tongue, a smooth transi-
tion from the first mode to the second mode occurs following a dynamical
mechanism similar to that described in Section 2.2. Similarly, a 5:1 internal
resonance between the second and fourth modes is observed in Figure 20.
These internal resonances occur despite that the linear natural frequencies
are not commensurate, as also discussed in Section 2.2.

These two examples demonstrate that such a nonlinear modal analysis
is an important tool for thoroughly understanding the system’s vibratory
response in the nonlinear regime. Clearly, this cannot be achieved using
linearization procedures. However, because the general motion of a non-
linear system cannot be expressed as a superposition of individual NNM
motions and because the modes in all these figures are computed based
on the underlying undamped system, the practical utility of the nonlinear
modal analysis might appear, at first, questionable.

A first motivation to compute and exploit the NNMs is that forced res-
onances in nonlinear systems occur in their neighborhoods. The knowledge
of the NNMs can therefore provide valuable insight into the structure of the
resonances, a feature of considerable engineering importance (10). For illus-
tration, system (4) is considered. In Figures 21 and 22, the backbone of the
FEP of Figure 12 is superposed to the nonlinear frequency response func-
tions of Figure 8 and 9. It can be observed that the backbone of the FEP
traces the locus of the frequency response peaks for both the in-phase and
out-of-phase modes. Furthermore, Figure 23 compares the forced response
of the system close to the first resonance (for F = 0.1, see the square in
Figure 21) to the free response of the corresponding point of the backbone.
An excellent agreement is obtained between the two types of motion.
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A second motivation is that the damped dynamics closely follows the
NNMs of the underlying undamped system. To demonstrate this, a time-
frequency analysis method, the continuous wavelet transform (CWT) (89),
is used. In contrast to the Fourier transform, which assumes signal station-
arity, the CWT involves a windowing technique with variable-sized regions.
Small time intervals are considered for high-frequency components, whereas
the size of the interval is increased for lower-frequency components. The
CWT can therefore track the temporal evolution of the instantaneous fre-
quencies, which makes it an effective tool for analyzing nonlinear signals.
The usual representation of the transform is to plot its modulus as a function
of time and frequency in a three-dimensional or contour plot. To use the
CWT in conjunction with the FEP, a different representation is proposed
herein. The CWT is represented in a frequency-energy plot by substituting
the instantaneous energy in the system for time.

The free response of system

ẍ1 + 0.03ẋ1 + (2x1 − x2) + 0.5 x3
1 = 0

ẍ2 + 0.01ẋ2 + (2x2 − x1) = 0 (26)

is depicted in Figures 24 and 25 for an excitation of an in-phase and out-
of-phase NNM, respectively. The top plot is the theoretical FEP, that is
the FEP computed from the equations of motion. The bottom plot is the
‘experimental’ FEP, calculated directly from the time series: (i) the back-
bone is provided by the CWT, and (ii) the modal curves are obtained by
representing the time series in the configuration space for one oscillation
around a specific energy level. For comparison, the theoretical backbone is
represented by a solid line in the experimental FEP. A perfect agreement
is obtained between the two FEPs, which shows that the undamped NNMs
are attractors for the damped trajectories. In the present case, the modal
damping ratios are 1% and 0.6%, but we note that this result holds for
higher damping ratios.

Figure 26 displays the free response of the planar cantilever beam excited
at its first mode (with a damping matrix equal to the mass matrix, C = M).
It shows that similar conclusions can also be reached for more complex
systems.

Even if a possible criticism of the proposed approach is that it defines
an NNM as a periodic solution of the underlying undamped system, these
two examples support that they still give a very accurate picture of the
damped dynamics. These results also show that the CWT is the ideal
companion to the NNMs. We believe that the combined use of the FEP and
the CWT represents a suitable framework for developing a new nonlinear
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system identification method, which could be viewed as a practical nonlinear
analog of experimental modal analysis.

For instance, one specific application that could ultimately benefit from
the proposed advancements is aircraft ground vibration testing (GVT) (90).
GVTs are performed on aircraft prototypes before their first flight and pro-
vide critical data for flutter analysis. Identification of an accurate model
during GVTs could allow the effects of nonlinearity on flutter to be explored
by calculation prior to the flight test programme. Such an improvement
would increase the aeroelastic prediction capabilities.

5 Conclusion

To robustly and accurately model nonlinearity in realistic vibrating struc-
tures is one of the greatest challenges in structural engineering. In this
context, NNMs certainly represent a useful framework for the dynamicist.
They have a clear conceptual relation to the linear normal modes, yet they
can highlight nonlinear phenomena that are unexpected (and unexplainable)
from a linear viewpoint.

The two main definitions, the fundamental properties and different an-
alytical and numerical methods for computing NNMs were reviewed and
illustrated with numerical examples. We have also highlighted that even
seemingly simple nonlinear systems can exhibit very complicated dynamics.
The 2DOF system investigated herein is characterized by an intricate NNM
structure with (presumably) a countable infinity of internal resonances and
strong motion localization in either oscillators. One interesting finding is
that the internal resonances occur without necessarily having commensurate
linear natural frequencies.
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Figure 1. Schematic representation of the 2DOF system example.
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Figure 2. Time series of LNM motions of system (3) (——: x1(t); −−−:
x2(t)). Left plot: in-phase LNM ([x1(0) x2(0) ẋ1(0) ẋ2(0)] = [1 1 0 0]); right
plot: out-of-phase LNM ([x1(0) x2(0) ẋ1(0) ẋ2(0)] = [1 − 1 0 0]).
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Figure 3. LNM motions of system (3) in the configuration space. Left plot:
in-phase LNM; right plot: out-of-phase LNM.

0 2 4 6 8
15

10

5

0

5

10

15

0 0.5 1 1.5
15

10

5

0

5

10

15

Time (s) Time (s)

D
is
p
la
ce
m
en
t
(m

)

D
is
p
la
ce
m
en
t
(m

)

Figure 4. Time series of NNM motions of system (2) (—
—: x1(t); − − −: x2(t)). Left plot: in-phase NNM
([x1(0) x2(0) ẋ1(0) ẋ2(0)] = [3.319 11.134 0 0]); right plot: out-of-phase
NNM ([x1(0) x2(0) ẋ1(0) ẋ2(0)] = [−10.188 0.262 0 0]).
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Figure 5. NNM motions of system (2) in the configuration space. Left
plot: in-phase NNM; right plot: out-of-phase NNM.
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Figure 6. Internally resonant NNM (3:1 internal resonance;
[x1(0) x2(0) ẋ1(0) ẋ2(0)] = [8.476 54.263 0 0]). Left plot: time series
(——: x1(t); −−−: x2(t)); right plot: configuration space.
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Figure 7. Two-dimensional invariant manifolds of system (2) with the cor-
responding LNMs. Left plot: in-phase LNM and NNM; right plot: out-of-
phase LNM and NNM.
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Figure 8. Nonlinear frequency response functions close to the first reso-
nant frequency (5 different forcing amplitudes: 0.002N, 0.01N, 0.05N, 0.1N,
0.2N). Left plot: x1; right plot: x2.



www.manaraa.com

Definition and Fundamental Properties of Nonlinear Normal Modes 31

0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

1.5

2

2.5

3

3.5

0.2 0.25 0.3 0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

A
m
p
li
tu
d
e
(m

)

��
FF

Figure 9. Nonlinear frequency response functions close to the second reso-
nant frequency (5 different forcing amplitudes: 0.002N, 0.01N, 0.05N, 0.1N,
0.2N). Left plot: x1; right plot: x2.
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Figure 11. Frequency-energy plot of system (3). LNM motions depicted
in the configuration space are inset.
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Figure 12. Frequency-energy plot of system (2). NNM motions depicted in
the configuration space are inset. The horizontal and vertical axes in these
plots are the displacements of the first and second DOFs, respectively; the
aspect ratio is set so that increments on the horizontal and vertical axes
are equal in size to indicate whether or not the motion is localized to a
particular DOF.
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Figure 14. Internally resonant NNMs (3:1 resonance). Top plot: close-up
of the tongue S31 in the frequency-energy plot. Bottom plots: configuration
space (horizontal axis: x1; vertical axis: x2) and Fourier coefficients of a
series containing cosine terms only (grey: x1; black: x2).
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Figure 15. Close-up of S11+ at higher energy levels.



www.manaraa.com

38 G. Kerschen

Figure 16. A few representative NNMs of system (2) in the configuration
space.
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Figure 17. NNM bifurcations of system (11) (7) (——: stable NNMs;
−− −: unstable NNMs).
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Figure 18. Close-up of S11+ with stability results (——: stable NNMs;
• • • : unstable NNMs).
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Figure 19. Frequency-energy plot of the cantilever beam; close-up of the
first mode.
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Figure 20. Frequency-energy plot of the cantilever beam; close-up of the
second mode.
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Figure 21. Nonlinear frequency response functions close to the first reso-
nant frequency (5 different forcing amplitudes: 0.002N, 0.01N, 0.05N, 0.1N,
0.2N). The dashed line is the backbone S11+ of the frequency-energy plot.
Left plot: x1; right plot: x2.
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Figure 22. Nonlinear frequency response functions close to the second
resonant frequency (5 different forcing amplitudes: 0.002N, 0.01N, 0.05N,
0.1N, 0.2N). The dashed line is the backbone S11− of the frequency-energy
plot. Left plot: x1; right plot: x2.
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Figure 23. Free (F = 0) and forced responses (F = 0.1) of system (4) in
the configuration space. ——: forced response; - - -: free response
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Figure 24. Frequency-energy plot of system (2). Top plot: theoretical
FEP; bottom plot: experimental FEP for an excitation of an in-phase NNM
([x1(0) x2(0) ẋ1(0) ẋ2(0)] = [2.500 5.895 0 0]).
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Figure 25. Frequency-energy plot of system (2). Left plot: theoretical
plot; right plot: experimental plot for an excitation of an out-of-phase NNM
([x1(0) x2(0) ẋ1(0) ẋ2(0)] = [−6.842 0.389 0 0]).
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Figure 26. Frequency-energy plot of the planar cantilever beam. Left plot:
theoretical plot; right plot: experimental plot for an excitation of the first
mode.
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Invariant Manifold Representations of
Nonlinear Modes of Vibration
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East Lansing, MI, 48824, USA

Abstract This chapter describes the definition and use of modes of
vibration in terms of invariant manifolds. The goal of this chapter is
to provide some basic background in terms of the terminology, ideas,
and constructive methods for nonlinear modes using invariant man-
ifolds. A range of formulations and applications are summarized
and an example is presented that demonstrates the main ideas for
a system with nonsychronous modes.

1 Introduction

For linear models of vibrating systems the concept of normal modes pro-
vide a means of describing complex systems in terms of uncoupled lower
order systems. The power of the mode concept is that it: (i) provides a
way to understand vibratory resonances, and (ii) it provides methods for
systematic reduction of model size, based on frequency ranges of interest.
The underlying basis for these tools is superposition, which essentially de-
fines linear systems. Thus, a generalization of these notions to nonlinear
systems must, necessarily, abandon any hope of applying or using super-
position. It is natural to ask, then, if is there anything useful that can
be done for nonlinear systems. In fact, the basic concept of modes can be
generalized; these modes help define nonlinear resonances, and can be used
for model reduction, although superposition does not hold. The concept
of “nonlinear normal modes,” or NNMs, of vibration is over a half-century
old now, having been pioneered by Rosenberg (20; 21; 22). A review of the
basic concepts of NNMs from Rosenberg’s work and its extensions up to
the mid-1990’s, can be found in (26; 27). Those sources, and more recent
reviews, describe a broad range of approaches and applications of NNMs
(19; 9; 16; 11; 12; 1). In this chapter we emphasize the use of invariant
manifolds, which provides a generalization of Rosenberg’s definition that
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allows one to treat non-conservative and non-self-adjoint systems. Other
chapters in this volume offer other useful methods for constructing and uti-
lizing NNMs.

The chapter is organized as follows. In the next section, we give some
basic definitions, supported by simple examples, both of which provide the
required conceptual framework for the remainder of the chapter. We avoid
mathematical formalism as much as possible, in order to focus on concepts
and constructive tools. Section 3 develops some of the ideas in the context
of linear vibration problems, in order to set the stage for nonlinear systems.
Section 4 provides the development of individual nonlinear modes, discusses
various formulations, and provides an example that demonstrates their con-
struction. The paper closes in Section 5 with a discussion of this approach
and some personal reflections about the utility of various approaches to
NNMs, including those presented here and elsewhere.

It should be noted that the references cited in this chapter are far from
complete. We point the reader to some general reviews and a few papers
to specific topics; but, for a broader perspective on the NNM literature the
reader should consult those papers and the other chapters of this volume.

2 Basic Concepts

2.1 Some Definitions

Here we provide some definitions and concepts useful for our develop-
ment. We use minimal mathematical formalism in order to present the
concepts in a manner that is accessible to readers with a wide range of
backgrounds. More detailed presentations of this material can be found in
many standard books such as (5; 6).

A fixed point of an autonomous dynamical system ż = F (z), z ∈ Rm, is
a point z̄ that satisfies F (z̄) = 0. That is, if the system is started at z̄ it
remains there for all time.

A fixed point z̄ is said to be stable if, roughly speaking, all solutions
started sufficiently near z̄ remain near z̄ for all time.

A fixed point z̄ is said to be asymptotically stable if it is stable and if all
solutions started sufficiently near z̄ tend towards z̄ as t→∞.

The linearization of ż = F (z) near z̄ is the linear time-invariant system
ẏ = Ay where y = z− z̄ and A = DzF (z̄), that is, A is the m×m Jacobian
of F (z) evaluated at z̄.

An invariant manifold of an autonomous dynamical system ż = F (z),
z ∈ Rm, is a set of points S in the phase space defined by the property that
if an initial condition is taken in S, that is, z(0) ∈ S, the resulting solution,
denoted z(t; z(0)), remains in S for all time, −∞ < t <∞. Mathematically
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this can be expressed as

S = {z(0) | z(t) ∈ S ∀ t}.

Locally, an invariant manifold of dimension p “looks like” (formally, is topo-
logically equivalent to) Rp. The concept of asymptotic stability can be gen-
eralized to invariant manifolds. Examples of invariant manifolds of practical
interest include fixed points (zero dimensional) and limit cycles (one dimen-
sional), which, when asymptotically stable, represent steady-state responses
for models of physical systems. Another group of useful invariant manifolds
are the stable, unstable, and center manifolds of fixed points, developed
next.

The stable/unstable/center eigenspace, denoted Es/u/c, of a fixed point
z̄ is the linear space spanned by the eigenvectors of A corresponding to
eigenvalues of A with negative/positive/zero real parts. Note that if the
eigenvalues are complex, the real and imaginary parts of the corresponding
eigenvector are used to span the corresponding part of the eigenspace. These
spaces are invariant for the linearized system ẏ = Ay, and are of dimension
ns/u/c where ns + nu + nc = m.

A stable/unstable/center manifold, denoted W s/u/c, of a fixed point z̄
is the nonlinear generalization of the eigenspaces defined above, based on
extending the eigenspaces away from the fixed point. Specifically, W s/u/c

are invariant manifolds of ż = F (z) that are tangent to Es/u/c at z̄, and
have the same dimensions as Es/u/c. Note that points on W s (Wu) are
asymptotic to z̄ as t → +∞ (−∞). The properties of W c are more sub-
tle, since solutions on it are dominated by nonlinear behavior that can be
stable or unstable, and in fact center manifolds need not be unique (5; 3).
Readers familiar with the phase plane for nonlinear second order systems
can recognize that the stable manifold of a saddle point is also known as a
separatrix, since it separates initial conditions that branch away from the
saddle point in opposite directions. Stable (unstable) manifolds for saddle
points are also referred to as the “inset” (“outset”) of the saddle point.

For vibrations of mechanical systems we focus on stable fixed points and,
in the case of harmonically force vibration, stable periodic motions. It is
key to note that since our focus is on vibrations, the motions are oscillatory
and thus must take place on invariant manifolds that are (at least) two-
dimensional. Before turning to that case, we present a simple example that
illustrates the utility and construction of invariant manifolds.
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2.2 Example Illustrating Invariant Manifolds

Here we present results for a simple planar system, selected for instruc-
tive purposes, that demonstrates many of the ideas described above. In
particular, this example demonstrates the utility of center manifolds. The
nonlinear system of interest is

ż1 = bz1z2 + cz31 (1)

ż2 = −z2 + az21 (2)

where a, b, c are constants. This system can be thought of as arising from
a series expansion near a fixed point. Here the origin (z1, z2) = (0, 0) is the
equilibrium of interest, and in fact, it is the only equilibrium of this system.
The origin has eigenvalues λ1,2 = (0,−1), which implies that linearization
cannot determine its stability (the origin is said to be non-hyperbolic). Here
one refers to z2 as a fast mode and z1 as a slow mode, and in fact it
is nonlinearly slow and its dynamics dominate the system behavior. It
is tempting to proceed as follows: Note that the second equation indicates
that z2 is asymptotically (in fact, exponentially) stable, so one might simply
take z2 → 0, so that the first equation yields ż1 = cz31 , which implies that
the z1 component is stable (unstable) for c < 0 (c > 0). This approach
is referred to as the tangent space approximation, and it is valid in some
cases (specifically, if either a or b is zero, as we will prove below). This
approach is, however, incorrect for this system if ab �= 0. We show next
that coefficients a and b must be systematically included in the analysis,
which employs a center manifold, to determine the stability of the origin.

The correct approach is to assume there exists an invariant (in this case,
center) manifold of the form,

z2 = h(z1) = αz21 + . . . (3)

where the form of the power series approximations accounts for the fact
that the center manifold must pass through the origin and be tangent to
the center eigenspace, in this case the z1 axis. The constant α is to be
determined. In this case only the quadratic term is required; but, one can
take more terms in the expansion if needed. Taking d/dt of this equation
yields

ż2 =
dh

dz1
ż1 = 2αz1ż1 + . . . . (4)

Substituting the ż’s from the original Equations (1,2) and z2 from the center
manifold expansion in Equation (3) into expression (4), and expanding in
z1 results in an equation that involves only series terms in z1 and does not
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include any time-dependence. Note that solutions that satisfy this equation
must satisfy both the dynamical system and the center manifold constraint.
The resulting equation has the form,

−(αz21 + . . .) + az21 = 2αz1
(
bz1(αz

2
1 + . . .) + cz31

)
+ . . . (5)

One can now gather like powers of z1, where in this case only the quadratic
term is of interest, which yields α = a (only terms from the left hand side
of the equation are needed here). If one repeats this process and includes
cubic and quadratic terms, it is found that the local expansion of the center
manifold near the origin is given by h(z1) = az21 − 2a(ab+ c)z41 + . . .. Note
that to leading (quadratic) order the center manifold is the curve along
which ż2 = 0, according to the Equation (2). However, inclusion of higher
order terms shows that this approach does not provide the correct higher
order terms for the center manifold.

Theorems state that the dynamics near the origin initially have behavior
such that z2 collapses exponentially fast towards the center manifold, and
then slow dynamics occur near the center manifold. These are governed
approximately by the z1 dynamics as projected onto the center manifold,
that is, by Equation (1), with the substitution (z1, z2) → (w, h(w)) (3).
This process, including only the leading order nonlinear terms, yields the
slow dynamics in the form,

ẇ = (ab+ c)w3 + . . . (6)

where w is a coordinate tangent to h (3). It is now seen that the stability
of the z1 dynamics is dictated by the coefficient (ab+ c), that is, the modal
coupling terms come into play in an essential manner. Specifically, for
(ab + c) > 0 the origin will be unstable, and for (ab + c) < 0 the origin
will be asymptotically stable, albeit very slow, converging like t−1/2. Note
that if (ab + c) = 0, higher order terms are critical and one must redo the
analysis keeping higher order terms in all expressions.

Figure 1 shows sample phase planes, including the center manifold ap-
proximated by z2 = h(z1) to quartic order, for this system for three sets
of parameter values. These cases depict various combinations of stability
conditions and center manifold curvatures. Note the fast convergence of tra-
jectories onto the center manifold and the slow flow on it, which indicates
the stability of the origin.

Center manifold analysis is a very powerful tool for the investigation of
bifurcations, since it allows for the systematic reduction of models to their
essential modes near critical points (5). It also allows one to determine the
behavior of systems when parameters are varied around the critical point,
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(a) (b) (c)

Figure 1. Sample (z1, z2) phase plane trajectories for Equations (1,2), and
the center manifold z2 = h(z1) shown as the green curve. Scale is −0.25 <
(z1, z2) < 0.25. (a) (a, b, c) = (−2, 1, 1), a stable case with (ab + c) = −1.
(b) (a, b, c) = (1, 1, 1), an unstable case with (ab + c) = 2. (c) (a, b, c) =
(1,−1,−1), a stable case with (ab+ c) = −2.

using the so-called “suspension trick” (3). We do not pursue these issues
here, but rather focus on the general framework outlined in the example for
constructing invariant manifolds and generating the dynamics on them.

2.3 Key Points About Invariant Manifolds

The key points regarding invariant manifolds are that (i) in a dynamical
system with m states there exist invariant sets of lower dimension k (< m)
on which the system is governed by a k-dimensional system; (ii) one can
develop differential equations for the form of invariant manifolds expressed
in terms of the state variables (without time); (iii) these equations can be
solved locally by expansion methods, and possibly by other methods; and
(iv) one must account for modal coupling when doing model reduction in
nonlinear systems, even weakly nonlinear systems. We now turn to equa-
tions and similar analysis relevant for vibratory systems.

2.4 Nonlinear Vibration Equations of Motion

In the field of mechanical vibrations, the equations of motion are gen-
erated by Lagrange’s method or Hamilton’s principle, resulting in second
order equations typically of the form,

Mẍ+ Cẋ+Kx+ g(x, ẋ) = f(x, ẋ, t) (7)
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where x ∈ Rn is a displacement of a lumped mass degree of freedom (DOF)
or, more generally, a linear combination of the degrees of freedom, M, C, K
are the usual mass, damping, and stiffness matrices, g(x, ẋ) represents non-
linear stiffness and damping terms, and f(x, ẋ, t) represents time-dependent
excitation. This model is developed such that x = 0 is the unforced (f = 0)
equilibrium point, so that the nonlinear terms satisfy g(0, 0) = 0. This can
be achieved for a general case by a translation of coordinates. Note that
for the first order (state space) form, ż = F (z), one takes the state vector
z = (x, ẋ), z ∈ R2n, and uses standard methods for putting the equations
of motion into first order form.

We begin our development for vibratory systems by considering linear
systems, that is, with f = 0, g = 0. This sets the stage for the subsequent
application of invariant manifolds to nonlinear systems.

3 Normal Modes as Invariant Manifolds for Linear
Systems

For convenience, we will assume that M and K are symmetric, but allow C
to have both symmetric (dissipative) and anti-symmetric (gyroscopic, non-
dissipative) components. The unforced (f = 0) linear (g = 0) system is
known to have solutions of the form x(t) = u eλt, u ∈ Rn, resulting in the
eigenproblem,

det
(
λ2M + λC +K

)
= 0 (8)(

λ2M + λC +K
)
u = 0. (9)

Since we are interested in the case of vibratory motions about the equi-
librium, we assume the system has underdamped linear modes, that is,
eigenvalues λ are complex conjugate pairs of the form ωk(−ζk ± i

√
1− ζ2k)

(k = 1, . . . , n) where ωk are the undamped modal frequencies, ζk are the
modal damping ratios, and i2 = −1. The results presented can be general-
ized to cases where some eigenvalues are real, but we do not consider that
case here. We will often assume that the damping matrix C is Caughey
(4), that is, C is made diagonal by the same similarity transformation that
diagonalizes M and K, the most common example of which is the case of
proportional damping, where C is a linear combination of M and K. When
C is Caughey, the system modes uk are real and the system has a modal
matrix P formed by taking the uk’s as columns, and P is the matrix for the
transformation that renders PTMP , PTCP , and PTKP diagonal. In this
case the vibration modes are standing waves, with nodal points of the uk’s
fixed in time. When C is not Caughey the system has complex modes uk
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that represent traveling waves with moving nodes. In all cases we assume
that the modes have distinct eigenvalues in order to avoid issues related to
degenerate modes. The topic of degenerate modes, which is important in
terms of modal interactions and stability, is considered in other chapters in
this volume.

When the system is Caughey and the eigenvalues are distinct, the modes
are orthogonal with respect to M , C, and K. If we normalize the modes to
satisfy uT

j Muk = δjk, where δjk is the Kronecker delta, then uT
kKuk = ω2

k.
Employing the standard transformation to modal coordinates via x = Pη =∑n

k=1 ukηk and projection onto the individual modes using the orthogonal-
ity conditions renders uncoupled equations of motion of the form,

η̈j + 2ζjωj η̇j + ω2
j ηj = 0 j = 1, . . . , n (10)

A fundamental property of linear modes is that if one starts with a set
of initial conditions in a single mode, that is, (x(0), ẋ(0)) = (αuk, βuk),
where α and β are scalar constants, then the response remains in that
mode for all time, that is, (x(t), ẋ(t)) = (ηk(t)uk, η̇k(t)uk). In other
words, the individual modes are invariant. In this modal response ηk =
Ak exp(−ζkωkt) cos(ωk

√
1− ζ2k t + φk), where Ak and φk depend on the

initial conditions, and the displacements and velocities of the system DOF
are mutually synchronous, so that peaks and zeros of displacements and
velocities are reached simultaneously by all degrees of freedom, resulting
in a standing wave response of the system (a damped wave if ζk > 0). In
this case one can represent a mode by a linear relationship between only
the displacements of the DOF (the ratios of amplitudes are fixed), and the
relationships between velocities of the DOF necessarily follow suit. It is pre-
cisely these types of modes that Rosenberg extended to the case of nonlinear
systems (22). In this case, he envisioned a nonlinear relationship between
the amplitudes of the DOF that must be satisfied, one that ensures syn-
chronous motion. That formalism results in a relationship that depends on
the total energy of the response, that is, there is not a single nonlinear rela-
tionship that works for all amplitudes of vibration of a given mode (except
in special cases).

A key insight into these linear modes is that since all DOF have the
same time behavior, one is sufficient to determine the response of the entire
system. In this way one can express a modal response in terms of a single
DOF, that is, x�(t) = a�jxj(t) where xj(t) is considered the master DOF
and all others are subordinate to it. In this notation the constants a�j
represent the elements of the associated modal vector u normalized so that
a�� = 1.

If C is not Caughey, this synchronous property is lost, even for the lin-
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ear system, and one must consider a state space formulation to develop
the notion of invariance. Specifically, in this case one must allow the dis-
placements and velocities of all DOF to be subordinate to a pair of states,
typically taken to be the displacement and velocity of a given DOF. Intro-
ducing y� = ẋ� and taking (xj , yj) for a particular DOF j as the master
states, these conditions are given by,

x� = a�jxj + b�jyj

y� = c�jxj + d�jyj (11)

where constants (a, b, c, d)�j must obviously satisfy a�� = d�� = 1 and b�� =
c�� = 0. Note that there will be one set of coefficients for each mode, so
that another index is required in the eventual formulation. For the case
of Caughey damping, the displacements and velocities are independent, so
that b�j = c�j = 0, and each have identical relative ratios, so that d�j = a�j .
This returns to the case described previously where the modes are real and
only one set of coefficients, the a�j ’s, are required.

The constraints expressed in Equation (11) represent a two dimensional
plane in the full state space parameterized by the master states. For a
system with n DOF and distinct eigenvalues there will be n such planes.
The system response restricted to such an invariant plane is equivalent to
a single DOF linear system, and its time behavior is the attendant modal
response. Since the plane is parameterized by two variables the responses
on this plane represent the family of modal responses resulting from all
possible initial conditions. It is precisely this picture that is extended to
define modes for nonlinear systems.

Example: A Linear Gyroscopic System Before turning to the non-
linear case, we demonstrate the main ideas as applied to linear systems
using a two DOF gyroscopic system. It is shown below that this process
can be generalized to nonlinear systems with several DOF. The example
linear system consists of a mass m connected via springs with homogeneous
stiffness k to a disk that rotates at a constant rate Ω, as shown in Figure
2. We will restrict Ω <

√
k/m since the system will become unstable above

this speed. The equations of motion for this undamped system expressed
in coordinates fixed to the disk are given by

ẍ1 + (ω2
0 − Ω2)x1 − 2Ωẋ2 = 0

ẍ2 + (ω2
0 − Ω2)x2 + 2Ωẋ1 = 0, (12)
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or, in state space form with yj = ẋj ,

ẋ1 = y1

ẏ1 = −(ω2
0 − Ω2)x1 + 2Ωy2

ẋ2 = y2

ẏ2 = −(ω2
0 − Ω2)x2 − 2Ωy1, (13)

where ω2
0 = k/m is the (repeated) natural frequency associated with the

responses of the stationary (Ω = 0) disk. Here the system is normalized so
that the mass matrix M is the 2×2 identity matrix I2, the stiffness matrix is
K = (ω2

0−Ω2)I2, and the skew-symmetric matrix C = −CT arises from the
gyroscopic nature of the system. Thus the system is not Caughey and we
expect complex modes if the system is formulated in the traditional second
order form.

Figure 2. A mass suspended by springs with homogeneous stiffness that
are fixed to a disk rotating about a fixed point at a constant rate Ω.

The choice of master coordinate is arbitrary (so long as it is not a node of
any mode), so here we use (x1, y1) as masters and (x2, y2) as subordinates.
The process of finding the normal modes using invariance is one that removes
time dependence using the constraint Equations (11) and the equations of
motion, yielding equations for the unknown coefficients. We begin with
Equation (11) and its time derivative, specialized to this two DOF case, for
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which we can drop the indices on the coefficients, which are given by,

x2 = ax1 + by1

y2 = cx1 + dy1 (14)

and

ẋ2 = aẋ1 + bẏ1

ẏ2 = cẋ1 + dẏ1. (15)

Coefficients (a, b, c, d) are to be determined, and there will be one set for
each mode. We substitute the expressions for the time derivatives given in
the equations of motion (13) into Equations (15), which results in the follow
equations relating the states without time behavior,

y2 = = ay1 + b
(−(ω2

0 − Ω2)x1 + 2Ωy2
)

−(ω2
0 − Ω2)x2 − 2Ωy1 = cy1 + d

(−(ω2
0 − Ω2)x1 + 2Ωy2

)
. (16)

The final step for obtaining the equations for the coefficients is to eliminate
x2 and y2 using the constraints given in Equations (14). Doing so and
gathering the terms for x1 and y1 in the results, one obtains the following
coupled quadratic equations for (a, b, c, d),

c− 2bcΩ− bΩ2 + bω2
0 = 0

−a+ d− 2bdΩ = 0

−2cdΩ+ aΩ2 − dΩ2 − aω2
0 + dω2

0 = 0

−c− 2Ω− 2d2Ω+ bΩ2 − bω2
0 = 0 (17)

It is interesting to note that the solution to these equations will yield the
linear modes of vibration, but the equations themselves are nonlinear, as
they must be since there are multiple modes (two in the present case). It
is also interesting to note that by this procedure one will find the mode
shapes (eigenvectors) before determining the eigenvalues (the coefficients
for the exponential time behavior).

There are multiple solutions of Equations (17), but only two have real
coefficients, and these are given by

a1,2 = 0

b1,2 =
1

Ω∓ ω0

c1,2 = ±ω0 − Ω

d1,2 = 0 (18)
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Figure 3. Constraints for the first mode of the gyroscopic system for ω0 = 1

and Ω = 0.75: (a) X
(1)
2 (x1, y1); (b) Y

(1)
2 (x1, y1).

For this system the normal modes are not synchronous, since the dis-
placements do not simultaneously reach zero and extrema, nor do the ve-
locities. In fact, in these modal responses the subordinate displacement x2

is independent of master coordinate x1 (since aj = 0) and, in fact, they
are simply proportional to master coordinate y1 via the bj . Thus, in these
modal responses the displacements are phase shifted from one another by
π/2, as an analysis of the linear system response would also reveal. Simi-
larly, the velocity y2 in a given modal response is independent of y1 (since
dj = 0) and is proportional to the displacement x1 via the cj .

To obtain the time behavior of these modal responses one simply enforces
the constraints on either of the equations of motion, which must yield the
same time response for (x1, y1) for each mode. Using the first equation of
motion and the constraint on ẋ2 = y2 yields the second order equation,

ẍ1 + (ω2
0 − Ω2 − 2Ωc)x1 − 2Ωdẋ1 = 0.

Letting uj be the displacement of mode j and using the values for the mode
coefficients in Equation (18), gives the equations of motion governing the
dynamics of the modes,

üj +
(
ω2
0 − Ω2 − 2Ω(±ω0 − Ω)

)
uj = 0 j = 1, 2 (19)

An invariant modal for this linear system can be represented by two planes
X2(x1, y1) and Y2(x1, y1). Examples of these for the first mode are shown
in Figure 3.
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from which one can compute the natural frequencies of the modes,

ω1,2 = ω0 ∓ Ω (20)

which are valid for Ω < ω0. Note that the rotation splits the repeated
frequencies and that ω1 reaches zero when Ω = ω0, at which point an
instability occurs.

An interesting feature of these responses is that the amplitudes of the two
DOF are equal in the modal responses, that is, if x1(t) = A cos(ωjt) where
A is the amplitude for mode j, then by this formulation x2(t) = bjy2(t) =
bj ẋ1(t) = −bjωjA sin(ω1t). For the first mode one finds that the ampli-
tude of x2 is also A since b1ω1 = −1, and thus this mode has (x1, x2)

(1) =
(A cos(ω1t), A sin(ω1t)), which is a counter-clockwise circular motion at fre-
quency ω1 in the (x1, x2) plane. Similarly, for the second mode one finds
that b2ω2 = +1, resulting in (x1, x2)

(2) = (A cos(ω2t),−A sin(ω2t)), which
is a clockwise circular motion at frequency ω2.

The modes for this system are in contrast with modes of a Caughey sys-
tem which are represented by lines (the eigenvectors) in the (x1, x2) plane.
For non-Caughey systems, including this gyroscopic example, the modes are
complex in the usual linear formulation. The present approach accounts for
the phase relationships between the DOF in a modal response using the
displacements and velocities, without the need for complex coordinates.

Of course, this system has radial symmetry and one can use polar coor-
dinate defined by (x1, x2) = (r cos θ, r sin θ) to analyze the response. In this
case the equations of motion are given by,

r̈ − (Ω + θ̇)2r + ω2
0r = 0

rθ̈ + 2ṙ(Ω + θ̇) = 0 (21)

where the second equation is equivalent to conservation of angular momen-
tum, that is, h = r2(Ω + θ̇) is constant. For a modal response we have
constant amplitude r = A and constant angular speed θ̇. Using these con-
ditions it is seen that the θ equation of motion becomes trivially satisfied,
and one finds that for r �= 0 only two values of θ̇ satisfy the r equation of
motion, namely, θ̇1,2 = ±ω0 − Ω. For Ω < ω0 these represent a counter-

clockwise (θ̇ > 0) rotation at ω0−Ω, that is, at ω1, and a clockwise (θ̇ < 0)
rotation at a rate ω0 +Ω, that is, at ω2. While the analysis using these co-
ordinates is considerably cleaner, its simplicity does not generalize to cases
where the stiffness is not homogeneous, whereas the (x1, x2) formulation
does.

A general procedure of this type for linear vibration systems can be
shown to be identical to the usual steps for determining modes and natural
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frequencies (24). We next develop the theory of modes for nonlinear sys-
tems based on invariant manifolds using a generalization of the approach
described above.

4 Normal Modes for Nonlinear Systems

Based on the formulation for a linear system described above, we provide
a definition for a NNM based on invariant manifolds and describe some of
its properties and methods of determining these modes. We formulate the
general problem first and then demonstrate its use on an example.

A nonlinear normal mode is defined by a parameterized family of re-
sponses that lie on a two-dimensional invariant manifold that is tangent
to a linear mode eigenspace. It can be visualized as a two dimensional,
generally curved, surface that constrains all DOF to a single pair of mas-
ter coordinates, typically the displacement and velocity of a DOF, or of
a modal coordinate. In this way it provides a natural extension to linear
normal modes that is a direct result of the extension of linear eigenspaces
into invariant manifolds, such as those shown in the linear system example
presented above. In fact, this concept goes back to Lyapunov, who proved
the existence of these invariant manifolds for conservative systems under
certain non-resonance conditions (10). Cases with internal resonance were
considered by Weinstein (28) and Moser (13). The line of work described
here was carried out to extend these notions to systems with damping and
other nonconservative effects and to provide constructive methods for deter-
mining NNMs in more general cases, with a view towards their application
to the nonlinear vibration of mechanical systems.

The key to our formulation is to impose invariance of an individual mode.
That is, we assume that the entire system behaves like a single DOF system
for special sets of initial conditions. These conditions are determined by
assuming there exists a response in which all system DOF are subordinate
to a single DOF. As shown above, in linear systems these conditions can
be expressed as linear combinations of the amplitudes of displacements and
velocities of the system DOF as they relate to a pair of master coordinates,
and these give rise to a purely modal response. These relations are equiv-
alent, of course, to the eigenvectors of the linearized system, and therefore
the amplitude is arbitrary. In nonlinear systems the relationships are gener-
ally nonlinear and the time dependent behavior depends on the amplitude
of motion. These features are universal for NNMs. We now describe the for-
mulation for invariant manifold NNMs using different types of coordinates
for the system dynamics, and also discuss some extensions of the method.
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4.1 State Space Formulation

The formulation proceeds as follows for a system with n DOF and states
(x�, y�), � = 1, 2, . . . , n, with equations of motion in the form

ẋ� = y�

ẏ� = f�(x, y) � = 1, 2, . . . , n (22)

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). Note that if the inertia
(mass) matrix of the system is not diagonal, and/or depends on the states
in some way, it must be inverted in order to isolate the accelerations to
reach this form of the equations of motion.

A pair of master coordinates (xj , yj) are selected, and in a modal re-
sponse all coordinates are subordinate to the masters, expressed as

x� = X�(xj , yj)

y� = Y�(xj , yj) � = 1, 2, . . . , n (23)

where clearly Xj = xj and Yj = yj . Taking time derivatives of these
conditions yields

ẋ� =
∂X�

∂xj
ẋj +

∂X�

∂yj
ẏj

ẏ� =
∂Y�

∂xj
ẋj +

∂Y�

∂yj
ẏj � = 1, 2, . . . , n. (24)

Now, the equations of motion (22) are employed in Equation (24) in order
to remove time dependence, obtaining,

y� =
∂X�

∂xj
yj +

∂X�

∂yj
fj(x, y)

f�(x, y) =
∂Y�

∂xj
yj +

∂Y�

∂yj
fj(x, y) � = 1, 2, . . . , n. (25)

The modal invariance constraints (23) are now imposed, to make Equation
(25) as follows,

Y� =
∂X�

∂xj
yj +

∂X�

∂yj
fj(X,Y )

f�(X,Y ) =
∂Y�

∂xj
yj +

∂Y�

∂yj
fj(X,Y ) � = 1, 2, . . . , n. (26)

One pair of these Equations (� = j) are trivial, and the remaining 2n−2 are
partial differential equations for the 2n−2 unknown functions (X�, Y�), � �=
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j, with independent variables (xj , yj). Solving these equations is equivalent
to solving the original equations of motion, but approximate methods can
be employed, as described below.

In nondegenerate cases these modes are local extensions of the linear
modes. The more complicated cases of internal resonances and strongly
nonlinear modes are not considered here, but are presented in other chapters
of this volume. To construct the local nonlinear modes that are extensions of
the linear modes one can use numerical methods (18; 16) or series expansions
in (xj , yj) to approximate the solutions for the unknown (X�, Y�). The series
expansions are assumed to have the form

X� = a�1xj + a�2yj + a�3x
2
j + a�4xjyj + a�5y

2
j + · · ·

Y� = b�1xj + b�2yj + b�3x
2
j + b�4xjyj + b�5y

2
j + · · ·

� = 1, 2, . . . , n; � �= j, (27)

with the a and b coefficients to be determined. This is a nonlinear extension
of the approach described previously for linear systems. Of course, one can
include nonlinear terms up to the desired order.

These expansions are substituted into Equation (26) and expanded in
terms of (xj , yj). Terms of like powers of xnx

j y
ny

j are gathered to provide a
set of equations for the a’s and b’s. At each order (linear, quadratic, etc),
these equations contain coefficients from that order and all lower orders, but
none from higher orders. As demonstrated in the linear gyroscopic example,
solution of the coefficients of the linear terms, for which nx + ny = 1,
involves solving a set of nonlinear equations for the (a1�, a2�, b1�, b2�), as it
must since there exist n linear modes and thus the equations must have
multiple solutions. The equations for the coefficients of the nonlinear terms
are solved sequentially at each order, that is at order m = nx + ny for
m = 2, 3, . . .. These equations are linear, but contain lower order coefficients
in their formulation. Thus, solving at quadratic order, m = 2, the equations
will had have non homogeneous terms that depend on (a1�, a2�, b1�, b2�), so
that each nonlinear mode has its own set of nonlinear coefficients. These
features are demonstrated in the example that follows.

A visualization of these modes is that they represent two-dimensional
surfaces whose tangent plane at the origin is the eigenspace corresponding
to the linear mode. In the terminology of Rosenberg, if these surfaces are
flat and identical to the linear modes, the nonlinear modes are referred to
as “similar,” which occurs in systems with certain types of symmetries.

Note that if one converts the equations of motion using the usual trans-
formation to linear modal coordinates, then in Equation (22) the function
f� will contain linear terms that depend on (x�, y�), and the nonlinear terms
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will depend generally on all states. In this formulation the form of the in-
variant manifolds is simplified since the eigenspaces are already known and
the NNM manifolds are tangent to them. The constraints in Equation (23)
are now purely nonlinear, except for � = j, since the dynamics are uncoupled
at linear order. This implies that the linear coefficients in Equation (27)
are all zero. It is quite natural to investigate systems in this manner since
the transformation to linear coordinates is quite standard and it simplifies
the analysis of the NNM manifolds.

4.2 Amplitude/Phase Coordinates

For numerical solutions of the invariant manifolds it is often convenient
to use polar coordinates, namely (x�, ẋ�) = (a� cos(φ�),−a�ω� sin(φ�)) where
ω� is the linear frequency of mode �. Here one can use Fourier series as
basis functions for the angles φ�, and there are several possibilities for basis
functions for expansion in the amplitudes a�. In this case for a particular
j the masters are taken to be (aj , φj), and the modal invariant manifold
constraints take the form,

ȧ� = A�(aj , φj)

φ̇� = Φ�(aj , φj) � = 1, 2, . . . , n (28)

where Aj = aj and Φj = φj . These coordinates are similar to those used
in the van der Pol transformation for the method of averaging (5). This
formulation uses expansions and projections to obtain a set of nonlinear
equations for unknown coefficients for the NNM invariant manifolds. These
are solved using standard techniques, from which the manifolds, and the
equations of motion on them, can be constructed. See (18) for examples of
these calculations.

4.3 Systems with Harmonic Excitation

All of the formulations described to this point are for free vibrations.
These systems do not have explicit time dependence, that is, they are au-
tonomous. In many applications it is useful to know the system frequency
response, that is, to understand its response to harmonic excitation over a
range of frequencies. The formulation described above can be extended to
that case by the addition of an auxiliary state that generates the harmonic
excitation. Specifically, for a system with n DOF and harmonic excitation,
we supplement the equations of motion with an additional state, ψ such
that ψ̇ = ω is the excitation frequency. The equations of motion in this
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formulation become

ẋ� = y�

ẏ� = f�(x, y, ψ) � = 1, 2, . . . , n

ψ̇ = ω (29)

which allows for any type of harmonic forcing, direct, parametric, etc. With
this addition, the invariant manifolds of Equation (23) now become

x� = X�(xj , yj , ψ)

y� = Y�(xj , yj , ψ) � = 1, 2, . . . , n (30)

which can be thought of as two-dimensional manifolds that vary periodically
in time (they are really three dimensional in the full extended state space).
If one prefers to not mix polar and state coordinates, a state model for the
harmonic excitation can be used where the auxiliary state dynamics are of
the form ẋn+1 = yn+1, ẏn+1 = −ω2xn+1, in which case xn+1 can play the
role of the harmonic excitation of frequency ω. See (8) for details of this
development and examples.

While this formulation allows one to address these problems in the in-
variant manifold framework, it must be admitted that usual perturbation
techniques are preferable in terms of computations and interpretation.

4.4 Multi-Nonlinear Mode Models

It must be stated that the concept of modes in nonlinear systems is
not nearly as powerful as it is for linear systems, primarily due to the lack
of superposition in nonlinear systems. The utility of NNMs is that sys-
tem with many DOF do respond with only a few active states under many
circumstances. The NNM formulation described above allows one to sys-
tematically reduce a nonlinear system to a single mode of vibration. In
linear systems all system responses can be constructed using combinations
of these individual modes. While this is not the case for nonlinear systems,
there exists a formulation that allows one to construct invariant manifolds
for multi-mode dynamics.

This formulation is particularly interesting in the case where internal
resonances occur. In fact, when formulating individual NNMs, as described
above, the equations for the nonlinear terms of the invariant manifold be-
come singular under conditions when the mode of interest cannot be dy-
namically uncoupled from one or more other modes. This is precisely what
occurs in conditions of internal resonance, where nonlinear coupling be-
tween modes allows energy exchange between those modes. In these cases,
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one must generalize the concept of NNMs to account for multi-mode inter-
actions.

We briefly outline the development here; the reader can find more details
in (2; 17). The system is expressed in terms of linear modal coordinates
as,

η̈i + ω2
i ηi = fi(η), i = 1, 2, . . . , n (31)

where the ηi’s are the linear modal coordinates, η is the vector with elements
ηi, the ωi’s are the linear natural frequencies, and the fi(η)’s are the nonlin-
ear forces expressed in terms of the η’s. (The method can easily be extended
to the case where the forces also depend on the η̇’s, although the compu-
tational effort for developing NNMs is much higher for those systems.) A
multi-NNM invariant manifold that accounts for M modes is taken to be
a 2M -dimensional manifold in the full state space, such that any motion
started on the manifold will remain on it for all times.

Generalizing the method for individual NNMs, a multi-NNM manifold
is developed as follows. We define a set of indices, SM , which described
a subset of the modes in the full dynamic model. For example, if one has
interactions between the first and third modes, then M = 2 and SM =
{1, 3}. In the general case, we require 2M master coordinates. Again using
the notation μj = η̇j , the masters are denoted by (ηk, μk), k ∈ SM , and all
other DOF as subordinate to these, according to{

ηi = Xi(ηk, μk)
μi = Yi(ηk, μk)

, for i /∈ SM , k ∈ SM (32)

Pesheck et al. (17) developed this method, using expansions similar to those
of Equation (27) to develop local approximations of these manifolds. Of
course, in this case there are many more coefficients to obtain. Jiang et
al. (7) developed these equations using the polar coordinates formulation
and used it to solve some example problems. The equations of motion are
obtained by selecting M pairs of state equations and restricting them to
the invariant manifolds. This leads to a system with M DOF in which
the modes are coupled via nonlinear terms. If the modes are nonresonant,
then a nonlinear (near identity) coordinate transformation can eliminate
the coupling terms, providing the normal form. If the modes are internally
resonant, transformations can eliminate some coupling terms, but the es-
sential ones that describe the mode interactions cannot be removed, and
this is precisely when the multi-mode models are most useful.

It must be admitted that the invariant manifold approach for multi-
mode systems is quite cumbersome, and its utility is mostly conceptual.
Standard methods that involve projection onto the linear modes and per-
turbation techniques, which result in the normal form for the particular
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internal resonance at hand are generally more practical for investigating
specific models.

4.5 Continuous Systems

The approach can be extended to the case when the model is a partial
differential equation for a distributed parameter, or continuous, system. In
this case, the method assumes that the response in a NNM is slaved to that
of a single point on the system, so long as that point is not a node of the
mode of interest. For this case we focus on one-dimensional structures of
length � with displacement field u(s, t) where s is the spatial variable. The
equations of motion are taken to be of the form,

utt + L[u, ut] +N [u, ut] = 0 , 0 ≤ s ≤ �

Bj [u] = 0 j = 1, . . . ,m , s = 0 & s = � (33)

where subscripts t refer to time derivatives, Bj [u] are the boundary condi-
tions, L is a linear operator, and N is a nonlinear operator. In this case we
assume that the master states are the displacement and velocity at a given
point so on the structure, namely (u(so, t), ut(so, t)), which we denote as
(uo(t), vo(t)). In a modal response the entire structure follows these states
according to constraints

u(s, t) = U(uo(t), vo(t), s, so)

ut(s, t) = V (uo(t), vo(t), s, so). (34)

When these conditions are forced onto the equations of motion, one ends up
with equations that must be solved for (U, V ). One can use expansions in
powers of (uo(t), vo(t)), of the form U(uo(t), vo(t), s, so) = a(s, so)uo(t)+· · · ,
which includes linear and nonlinear terms in (uo(t), vo(t)). The process then
leads to differential equations in s for the coefficients in the expansions,
such as a(s, so). For linear systems this leads to an alternative formulation
for the eigenvalues and eigenfunctions, and its generalization allows one to
compute NNMs for this class of problems. Once the (U, V ) are determined,
the modal dynamics are obtained by imposing them on the equations of
motion, which leads to ordinary differential equations for (uo(t), vo(t)) or,
equivalently, a second order ordinary differential equation for uo(t). Details
for this approach can be found in (25).

Another approach for continuous systems is to carry out an expansion
and projection of the equations of motion (33) onto some assumed modes,
which then convert the system into a finite dimensional form that can be
handled by the methods described above (23). NNMs for continuous systems
can also be handled using perturbation methods (15; 14).
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4.6 Example: A Nonlinear Gyroscopic System

To illustrate the ideas and calculation for a relatively simple system, we
extend the linear gyroscopic model shown in Figure 2 to include nonlinear
stiffness effects. The restoring force is assumed to depend on the radial
displacement r =

√
x2
1 + x2

2 from the equilibrium, and have linear and cu-
bic terms, that is, it has magnitude Fr = kr + γ̂r3. Again, one can use
polar coordinates to analyze this system, but we show results for (x1, x2) to
demonstrate the methodology.

The projections of the restoring force onto the xj coordinates are given
by Frj = −xj

(
k + γ̂(x2

1 + x2
2)
)
, and so the equations of motion are given

by

ẍ1 + (ω2
0 − Ω2)x1 + γx1(x

2
1 + x2

2)− 2Ωẋ2 = 0

ẍ2 + (ω2
0 − Ω2)x2 + γx2(x

2
1 + x2

2) + 2Ωẋ1 = 0, (35)

where γ = γ̂/m. In state space form with yj = ẋj these become,

ẋ1 = y1

ẏ1 = −(ω2
0 − Ω2)x1 − γx1(x

2
1 + x2

2) + 2Ωy2

ẋ2 = y2

ẏ2 = −(ω2
0 − Ω2)x2 − γx1(x

2
1 + x2

2)− 2Ωy1. (36)

The process for determining the NNMs for this system follow the steps of
the linear system, using (x1, y1) as masters and (x2, y2) as subordinates.
Here the constraints must be nonlinear, so the form given in Equation (23)
is used, and expansions similar to those described in Equation (27) are used
to implement them. In the present case we will use some knowledge about
the system to reduce the number of coefficients required in the NNM formu-
lation. First, we have already solved the linear coefficients of the manifold
and found that two of the four are zero. Also, since the nonlinearities are
cubic in nature, no quadratic terms will appear in the expansion. Finally,
from symmetry considerations one finds that four of the eight cubic coeffi-
cients are zero. Based on these facts we can assume a simplified expansion
of the form

X2 = by1 + ex2
1y1 + fy31 + · · ·

Y2 = cx1 + gx3
1 + hx1y

2
1 + · · · (37)

These expansions are substituted into Equation (26) and expanded in pow-
ers of xnx

1 y
ny

1 . For nx + ny = 1 the linear coefficients are obtained and,
of course, match those in the analysis of the linearized system as presented
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above in Equation (18). Gathering the cubic (nx+ny = 3) terms and match-
ing coefficients leads to a set of four equations that are linear in (e, f, g, h)
and have nonhomogeneous terms that depend on b and c. Thus, there are
two sets of solutions for these equations, one for each mode. These coeffi-
cients are proportional to the nonlinear stiffness coefficient γ, and are given
by

e1,2 =
±γ

2ω0(Ω∓ ω0)2

f1,2 =
±γ

2ω0(Ω∓ ω0)4

g1,2 =
±γ
2ω0

h1,2 = e1,2 (38)

The corresponding modal surfaces for the two modes, represented by the
constraints (X2, Y2) as functions of (x1, y1) for each mode, are two dimen-
sional surfaces. These are plotted in Figures 4 and 5 for the two modes.
Note that the tangent planes of these curved surfaces at the origin represent
the linear normal modal eigenspaces, and that only one of these surfaces has
significant nonlinear effects for these parameter conditions and amplitudes.
The curved nature of the surfaces are precisely the conditions required to
maintain invariance, so that if one starts with initial conditions on a pair
modal surfaces, the response will move on trajectories that remain on these
surfaces for all time. Since this system is conservative, these responses will
be periodic, described by the equation derived below. The invariant man-
ifolds are precisely the surfaces formed by this family of periodic solutions
in the state space, parameterized by the amplitude of vibration, which can
be quantified in several ways, for example, the energy of the response.

As noted for the linear version of this system, the normal modes are not
synchronous, since the displacements do not simultaneously reach zero and
extrema, nor do the velocities. For the NNMs, from the form in Equation
(37) it is seen that the phase shift of π/2 between the displacements in a
NNM response persists, namely that when the displacement x1 is zero, the
velocity y2 is zero, and similarly with x2 and y1. However, in contrast to the
linear modes, the displacement of x2 is not independent of master coordinate
x1 due to nonlinear coupling effects, and similarly y2 is not independent of
y1. While the modal responses will be close to harmonic, they will have small
higher order harmonics (these will be odd due to the symmetric nature of the
nonlinearity), and their frequencies of oscillation will depend on amplitude,
as we now show.
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Figure 4. Constraints for the first NNM of the gyroscopic system for ω0 =

1, γ = 0.5, and Ω = 0.75: (a) X
(1)
2 (x1, y1); (b) Y

(1)
2 (x1, y1).

Figure 5. Constraints for the second NNM of the gyroscopic system for

ω0 = 1, γ = 0.5, and Ω = 0.75: (a) X
(2)
2 (x1, y1); (b) Y

(2)
2 (x1, y1).

As in the linear case, the time behavior of these modal responses are
obtained by enforcing the constraints on either of the equations of motion.
Here, the equations of motion and the constraints are nonlinear. Using the
first equation of motion and imposing the modal constraints yields,

ẍ1 + (ω2
0 − Ω2)x1 + γx1(x

2
1 +X2

2 (x1, y1))− 2ΩY2(x1, y1) = 0.
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Using the series expansions for X2 and Y2, keeping only cubic terms, noting
that y1 = ẋ1, rearranging terms, and letting (x1, y1) → (uj , u̇j) where
j = 1, 2 for the two modes, the modal response equation becomes,

üj + (ω2
0 − Ω2 − 2Ωcj)uj + (γ − 2Ωgj)u

3
j +

(
γb2j − 2Ωhj

)
uj u̇

2
j = 0,

which is a conservative nonlinear oscillator. Using standard methods one
can show that this oscillator has an amplitude-dependent frequency given
to leading nonlinear order in the amplitude A by

ωj(A) = ωj +A2
3 (γ − 2Ωgj) + ω2

j

(
γb2j − 2Ωhj

)
8ωj

+ · · ·

where ωj =
√

ω2
0 − Ω2 − 2Ωcj is the linear natural frequency of mode j.

Substitution of the coefficients for the two modes and simplification yields,

ω1,2(A) = ω0 ∓ Ω+A2 γ

2ω0
+ · · · (39)

as the frequencies of nonlinear oscillation. Note that the nonlinear adjust-
ment term is the same for both modes.

To consider the time behavior of these NNM motions we consider the
relative amplitudes of x1 and x2 in a NNM response. Recall that in the
linear case the amplitudes of x1 and x2 were equal, even though the dis-
placements were phase shifted by π/2. Due to symmetry, this must still
be the case, as we now show. For a NNM response the constraint x2(t) =
bjy1(t) + ejx

2
1(t)y1(t) + fjy

3
1(t) must hold. From this we can obtain the

amplitude of the dominant harmonic of x2(t) using the dominant harmonic
approximation (x1(t), y1(t)) = (A cos(ωjt),−Aωj sin(ωjt)), along with the
known expressions for the coefficients (bj , ej , fj), and some trig identities.
This process shows that the main harmonic of x2 is A sin(ω1t) for the first
NNM and−A sin(ω1t) for the second NNM. Thus the first NNM is a counter-
clockwise circular motion at ω1(A) in the (x1, x2) plane and the second mode
is a clockwise circular motion at ω2(A). This is valid for a range of ampli-
tudes A for which the system is weakly nonlinear, that is, |ω2

0A| >> |γA3|,
or, equivalently, A < ω0/

√
γ.

Again, using polar coordinates for this symmetric system is cleaner and
provides a check on the preceding results. Extending the analysis used for
the linear model, we obtain for the equations of motion in (r, θ), as follows,

r̈ − (Ω + θ̇)2r + ω2
0r + γr3 = 0

rθ̈ + 2ṙ(Ω + θ̇) = 0 (40)
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For a NNM response we have constant amplitude r = A and constant
angular speed θ̇. Using these conditions, one finds that for r �= 0 only
two values of θ̇ satisfy the r equation of motion, namely, θ̇1 = ω1(A), a
counterclockwise rotation for Ω < ω0 and small A, and θ̇2 = −ω2(A) a
clockwise rotation, verifying the NNM analysis.

5 Discussion

The topic of NNMs has an interesting history. Originally developed by
Rosenberg to extend the notion of modes to nonlinear systems, it stayed in
the realm of nonlinear dynamics for several decades, where many interesting
results were obtained about the stability and bifurcations of NNMs. The
area was relatively dormant for some time but has recently expanded into
tools for dealing with nonlinear vibrations in mechanical systems. There are
many opinions about the practical utility of NNMs as a tool for analysis.
It is true that for weakly nonlinear systems perturbation methods yield the
same results and are preferred by many researchers (including the author)
for most calculations. The NNM concept can be extended to strongly non-
linear systems, and typically internal resonances with other modes cause
NNM responses to become complicated by coupling to other modes, as de-
scribed in other chapters in this volume. Furthermore, there is a looming
question about the conditions under which any given NNM may or may
not be observed in a system response with general initial conditions. All of
these criticisms are valid and relevant to the utility of NNMs for experimen-
tal work. However, the fact remains that NNMs provide a very powerful
and useful framework for thinking about nonlinear vibrations of mechanical
systems. They can be used for developing useful low order models for sys-
tems that systematically account for nonlinear effects, including coupling
between linear modes, and they are closely related to the system responses
one sees when they are excited near resonances. From this point of view, the
concept of NNMs is something that should be in the mindset of researchers
working in nonlinear vibrations.
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during those years by grants from the US Army Research Office and the
US National Science Foundation (NSF). The author’s current related work
on nonlinear resonances in MEMS and torsional vibration absorbers is sup-
ported by the US NSF under grants CMMI-1234067 and CMMI-1100260.
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1 Introduction and notations

These lecture notes are related to the CISM1 course on ”Modal Analysis of
nonlinear Mechanical systems”, held at Udine, Italy, from June 25 to 29,
2012. The key concept at the core of all the lessons given during this week
is the notion of Nonlinear Normal Mode (NNM), a theoretical tool allowing
one to extend, through some well-chosen assumptions and limitations, the
linear modes of vibratory systems, to nonlinear regimes. More precisely
concerning these notes, they are intended to show the explicit link between
Normal Form theory and NNMs, for the specific case of vibratory systems
displaying polynomial type nonlinearities. After a brief introduction review-
ing the main concepts for deriving the normal form for a given dynamical
system, the relationship between normal form theory and nonlinear normal
modes (NNMs) will be the core of the developments. Once the main re-
sults presented, application of NNMs to vibration problem where geometric
nonlinearity is present, will be highlighted. In particular, the developments
of reduced-order models based on NNMs expressed asymptotically with the
formalism of real normal form, will be deeply presented. Applications are
devoted to thin structures vibrating at large amplitudes, with a special em-
phasis on thin shells of different geometry (from plates to closed circular
cylindrical shells). Effective reduced-order models for the prediction of the
type of nonlinearity (hardening/softening behaviour), or the computation
of complete bifurcation diagrams for the case of forced vibrations, will be

1CISM stands for ”Centre International des Sciences Mécaniques” (in French), or ”In-

ternational Centre for Mechanical Sciences”, see www.cism.it

G. Kerschen (Ed.), Modal Analysis of Nonlinear Mechanical Systems, CISM International 
Centre for Mechanical Sciences DOI 10.1007/ 978-3-7091-1791-0_3 © CISM Udine 2014
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shown, for toy models including a small number of degrees-of-freedom (typ-
icaly two to three dofs), as well as for continuous models such as beams,
plates and shells.

The following notations will be used throughout the lecture notes. For
generic (nonlinear) dynamical systems, X will denote the state vector, X ∈
E , where E is the phase space, of dimension n. Generally, the simple choice
E ≡ R

n is retained. The dynamical system is denoted as:

Ẋ = F(X), (1)

with F the vector field, which could depend on one or more parameters.

For the particular case of vibratory system, geometric nonlinearity is
considered, so that only quadratic and cubic type nonlinearities are present
in the equations of motions. Hence for nonlinear vibration problems, the
generic equations of motion consist in a set of N oscillator equations, de-
noted under the general formulation:

∀ p = 1, ..., N : Ẍp+ω2
pXp+

N∑
i=1

N∑
j≥i

gpijXiXj+

N∑
i=1

N∑
j≥i

N∑
k≥j

hp
ijkXiXjXk = 0,

(2)
where gpij denotes the generic quadratic nonlinear coupling coefficient, and
hp
ijk the cubic one. In this notation, the upperscript p refers to the oscillator-

equation considered, while the subscripts (i, j, k) denotes the coupling monom
XiXjXk. Note that damping is not considered in Eq. (2). Inclusion of dis-
sipative mechanism will be included in some parts of the notes. Note also
that the linear part is diagonal, which means that the variable Xp is the

modal amplitude of the pth linear normal mode. In cases where the linear
part is not given as diagonal, a linear change of coordinate can be performed
to fit the framework presented here. Finally, to recover the first-order dy-
namical system formalism, the velocity Yp = Ẋp is used as complementary
variable, so that, for a collection of N oscillators, the state variable writes:
X = [X1 Y1 X2 Y2 ... XN YN ], so that dim(E) = 2N .

The first section is devoted to normal form theory. The main idea of
introducing a nonlinear transform in order to simplify as much as possible
the equations of motion, is first introduced in an illustrative manner where
the reverse problematic is considered. Very simple examples in dimension
1 and 2 allows introducing the key concept of resonance. The core of the
theory, the theorems of Poincaré and Poincaré-Dulac, are then given in a
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general context, and the result is then specialized to the case of vibratory
problems. The main results are given for a conservative problem, and the
link to NNMs, is illustrated, allowing derivation of important ideas such
as reduced-order modeling and classification of nonlinear terms for physical
interpretation. Finally, the case of damped mechanical systems is tackled.

The second section focuses on the prediction of the type of nonlinearity
(hardening/softening behaviour) for a system of oscillator of the form (2).
It is shown that NNMs and normal form gives the correct framework for
an efficient and accurate prediction. Examples on two-dofs system, and
spherical-cap shells with varying radius of curvature (from the flat plate
case to spherical shells), illustrates the method. Finally the influence of the
damping on the type of nonlinearity is discussed.

The third section tackles the problem of deriving accurate reduced-order
models (ROMs) for thins structures harmonically excited at resonance, in
the vicinity of one of its eigenfrequency, and vibrating at large amplitudes.
NNMs and normal form are used to derive the ROMs, and examples on
different shells are shown: a doubly-curved (hyperbolic paraboloid) panel
illustrates a case without internal resonance, while a closed circular cylin-
drical shell allows illustrating a more complicated case with a 1:1 internal
resonance. the complete bifurcation diagram with different kind of bifurca-
tion points are clearly recovered by the ROM, and a comparison with the
most routinely used Proper Orthogonal Decomposition method (POD) is
shown to conclude the notes.

2 Normal form theory

Normal form theory is a classical tool in the analysis of dynamical systems,
and general introductions can be found in many textbooks, see e.g. (Guck-
enheimer and Holmes, 1983; Iooss and Adelmeyer, 1998; Wiggins, 2003;
Manneville, 1990). It is generally used in bifurcation theory in order to de-
fine the simplest form of dynamical systems generating classical bifurcations
of increasing co-dimension. Here however, the general theory will be used
for another purpose: defining a nonlinear change of coordinates allowing
one to express the dynamics in an invariant-based span of the phase space,
where the (curved) generating axis are the invariant manifolds arising from
the linear eigenspaces, i.e. the NNMs of the system.

Normal form theory is based on two major theorems, due to Poincaré
and Poincaré-Dulac, which have been demonstrated in the beginning of the
XXth century (Poincaré, 1892; Dulac, 1912). The main idea is to simplify,
as far as possible, the equations of motion of a nonlinear dynamical systems,
by means of nonlinear change of coordinates. The presentation will begin
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with a reverse problematic, in order to understand better the main issue:
starting from a simple, linear problem, we will show how a nonlinear change
of coordinate can make it appear as complicated. Then the normal form will
be introduced gradually with two examples study, starting from the simplest
cases with dimension 1 and 2. The ”reverse” illustrative problematic is
borrowed from Manneville (2004), and the presentation of normal form used
follows closely that shown in Manneville (2004, 1990).

2.1 Problematic

Before entering the complicated calculations for tackling the general case,
let us first introduce an illustrative example, allowing us to properly define
the goal pursued, which is defined as trying to simplify as far as possible,
in the vicinity of a particular solution (e.g. fixed point or periodic orbit), a
given dynamical system.

To begin with, let us consider the simple initial-value problem:

d2Y

dt2
+ Y = 0, (3a)

Y (t = 0) = Y0,
dY

dt
(t = 0) = 0, (3b)

where Y is a real coordinate depending on time t. This equation is that of
a single oscillator, with eigenfrequency equal to one. Its solution in time is
known and reads:

Y (t) = Y0 cos t. (4)

Now let us introduce the transformed variable:

X = exp(Y )− 1. (5)

Differentiating Eq. (5) two times with respect to time t, and inserting in
the original dynamical equation (3a), one can show that the transformed
variable X satisfy the following evolution equation:

(1 +X)Ẍ − Ẋ2 + (1 +X)2 ln(1 +X) = 0, (6)

where ln is the natural logarithm. In the case where one would have to face
a physical problem expressed by Eq. (6), with appropriate initial conditions,
then the solution would have been more difficult to find ! Maybe that with
a great intuition and a bit of luck, one could have find the solution which,
in our case, is known by construction, and is simply given by:

X(t) = exp(Y0 cos t)− 1. (7)
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Figure 1. (a) Time series of the transformed variable X (black solid line),
compared to the original Y (thin blue line), for the problem defined through
Eqs (3)-(7). (b): Fourier Transform of X (black solid line) and Y (thin blue
line), showing their harmonic content.

The solution for X is represented in Fig. 1. As awaited, it is 2π-periodic,
but contrary to the initial solution for Y displaying only one harmonic
component, the X solution shows an infinity of harmonics, with exponential
decay in amplitude, as revealed by the Fourier transform of X, Fig. 1(b).
This example shows that the apparent complexity of the problem for X
only results from a nonlinear change of coordinates. Looking at the things
in a reverse manner, the question arising is naturally: for a given problem,
is it possible to find such a nonlinear transformation that could simplify, at
best linearise, the initial system ? The main idea of normal form theory is
to give an answer to this question. Without inspired intuition, one could
at least try an asymptotic, power series expansion, in order to get an idea
of the sought nonlinear change of coordinates. This functional relationship
has to be defined in the vicinity of Y = 0 (or equivalently, X = 0), which
is the fixed point of the original dynamical system (equivalently, of the
transformed system). Once again the result is known and reads, in our
case:

X =
+∞∑
n=1

1

n!
Y n. (8)

Note that X ∼ Y for X,Y small, which means that the transformation
is identity-tangent, and aims at conserving the linear characteristic of the
original system. In a general case where the solution is not known, one
would like to find iteratively, order by order, the nonlinear transformation.

Let us close these introductory remarks by precising what is meant by
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”as far as possible”, in the definition of the nonlinear transform. Consider
the general dynamical system Ẋ = F (X), where F (X) = X + Xp, in the
vicintiy of the fixed point X = 0. The common sense would state that this
problem with p= 6 is ”more nonlinear” than the same with p=2. However,
as shown in Fig. 2, the linear approximation F (X) ∼ X is valid on a larger
range of X-amplitudes for p=6 than for p=2. Hence the dynamical system
with F (X) = X+X6 is ”less nonlinear” than the one with F (X) = X+X2,
because the nonlinearities are activated for larger values of the amplitude
X, and one could give confidence to a linear approximation on a larger range
of amplitudes.

0 0.2 0.4 0.6 0.8 1
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0.5
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1.5
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X

F
(X

)

p=2

p=4

p=6

Figure 2. Representation of F (X) = X +Xp for p=2, 4, 6, as compared
to the linear case.

Finally, the goal can now be stated properly: for a given dynamical
system, in the vicinity of a particular solution (typically a fixed point), we
would like to find out nonlinear transformations that aims at extending
the validity range of the linear approximation, by cancelling a maximum
number of monoms of increasing orders, in the power series expansion of
the vector field. The next subsection introduces the normal form transform
for simple problems where the phase space have dimension 1 and 2, before
generalizing the results for any dimension and any dynamical system.

2.2 Example study

The problem in dimension n = 1

Let us consider a dynamical system:

Ẋ = sX + a2X
2 + a3X

3 + ... = sX +
∑
p>1

apX
p, (9)
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where X ∈ R (phase space of dimension n=1). X=0 is a hyperbolic fixed
point as long as s �= 0, otherwise a marginal case is at hand (bifurcation
point).

Let us introduce a nonlinear transform:

X = Y + α2Y
2, (10)

where α2 is introduced in order to cancel the quadratic monom of the orig-
inal system, i.e. a2X

2 in Eq. (9). Here Y is the new variable, and the goal
of the transformation is to obtain a dynamical system for the new unknown
Y that is simpler than the original one. Differentiating (10) with respect to
time and substituting in (9) gives:

(1 + 2α2Y )Ẏ = sY + (sα2 + a2)Y
2 +O(Y 3) (11)

All the calculation are realized in the vicinity of the fixed point. Hence
Y � 1, so that one can mutliply both sides by:

(1 + 2α2Y )−1 =

+∞∑
p=0

(−2)pαp
2Y

p (12)

Rearranging the terms by increasing orders finally leads to:

Ẏ = sY + (a2 − sα2)Y
2 +O(Y 3) (13)

From that equation, it appears clearly that the quadratic term can be can-
celled by selecting:

α2 =
a2
s
, (14)

which is possible as long as s �= 0. This condition has been assumed at the
beginning (hyperbolicity of the fixed point). Hence with that choice, the
objective is fulfilled, the nonlinearity has been repelled to order three. The
only condition appearing is that of hyperbolicity, which means that we are
not at a (singular) bifurcation point. The process can be continued further,
let us examine what happens for the third order. First, one has to write the
resulting dynamical system for Y , by expliciting the third-order term, which
has been modified after the first transform that has cancelled the quadratic
monom. Substituting for (10) in (9), with the retained choice α2 = a2/s,
leads to:

Ẏ = sY + ā3Y
3 +O(Y 4), where ā3 = a3 + 2a22/s (15)

A cubic transform is now introduced in order to simplify (15):

Y = Z + α3Z
3, (16)
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Repeating the same procedure leads to:

Ż = sZ + (ā3 − 2sα3)Y
3 +O(Y 4), (17)

which shows that the cubic term can be cancelled by selecting:

α3 =
ā3
2s

. (18)

Once again, the only condition appearing in the calculation is the one al-
ready found, s �= 0. The complete change of coordinate can be written up
to third order by gathering together Eqs. (10) and (16):

X = Z +
a2
s
Z2 +

ā3
2s

Z3 +O(Z4), (19)

and the resulting dynamical system for the knew unknown Z now reads:

Ż = sZ + ā4Z
4 +O(Z5), (20)

where ā4 has to be computed properly by replacing (10) in (9) and carefully
selecting fourth-order terms. This process is more and more difficult with
increasing orders, and rapidly suggest for helping oneself with symbolic
computation softwares. In any case we can conclude that:
• The objective is fulfilled: nonlinearities have been repelled up to fourth
order. The process can be continued until complete linearisation of the
problem, which is possible as long as s �= 0 (hyperbolicity condition).

• The computed nonlinear transform becomes singular when one ap-
proaches the marginality for s −→ 0, because the αi’s scale as 1/s.
This is a reflection of the fact that the nonlinearities dominates the
dynamical behaviour in the vicinity of the bifurcation point; however
the linearisation is still possible as long as one is away from that point.

The problem in dimension n = 2

Before generalizing the result, the problem in a phase space of dimension
2 is now tackled. In dimensions n ≥ 2, resonance conditions appear, hence
making the problem a little bit more complicated than what could be ex-
pected from the precedent subsection, where the hyperbolicity condition has
been found to be sufficient for simplifying the original system.

We consider X = (X1 X2)
t ∈ R

2, and for simplicity the dynamical
system Ẋ = F (X) is considered quadratic in X. We also assume that the
linear part is diagonal and that the two eigenvalues reads (s1, s2). The
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system can be written explicitely as:

Ẋ1 = s1X1 + a111X
2
1 + a112X1X2 + a122X

2
2 , (21a)

Ẋ2 = s2X2 + a211X
2
1 + a212X1X2 + a222X

2
2 . (21b)

The nonlinear transform is introduced:

X1 = Y1 + α1
11Y

2
1 + α1

12Y1Y2 + α1
22Y

2
2 , (22a)

X2 = Y2 + α2
11Y

2
1 + α2

12Y1Y2 + α2
22Y

2
2 . (22b)

Differentiating (22) with respect to time and replacing in (21) leads to:

(1 + 2α1
11Y1 + α1

12Y2)Ẏ1 + (α1
12Y1 + 2α1

22Y2)Ẏ2 = s1Y1+

(a111 + s1α
1
11)Y

2
1 + (a112 + s1α

1
12)Y1Y2+

(a122 + s1α
1
22)Y

2
2 +O(Y 3

1,2) (23a)

(1 + 2α2
22Y2 + α2

12Y1)Ẏ2 + (α2
12Y2 + 2α2

11Y1)Ẏ1 = s2Y2+

(a211 + s2α
2
11)Y

2
1 + (a212 + s2α

2
12)Y1Y2+

(a222 + s2α
2
22)Y

2
2 +O(Y 3

1,2) (23b)

The calculation is pursued by noting that, at the lowest order, one has:

Ẏ1 = s1Y1 +O(Y 2
1,2), (24)

Ẏ2 = s2Y2 +O(Y 2
1,2), (25)

Hence the derivatives with respect to time involving a product in (23) can
be replaced thanks to YiẎj = sjYiYj +O(Y 3

1,2), so that finally one obtains:

Ẏ1 = s1Y1+(a111 − s1α
1
11)Y

2
1 + (a112 − s2α

1
12)Y1Y2

+ (a122 + (s1 − 2s2)α
1
22)Y

2
2 (26a)

Ẏ2 = s2Y2+(a211 + (s2 − 2s1)α
2
11)Y

2
1 + (a212 − s1α

2
12)Y1Y2

+ (a222 − s2α
2
22)Y

2
2 (26b)

In the previous equations, the unkonwns {αp
ij} can be found by setting:

α1
11 =

a111
s1

, α1
12 =

a112
s2

, α1
22 =

a122
2s2 − s1

, (27a)

α2
11 =

a211
2s1 − s2

, α2
12 =

a212
s1

, α2
22 =

a222
s2

, (27b)
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so that the complete cancellation of all the nonlinear terms present in the
original equations (21) is possible if and only if:

s1 �= 0, s2 �= 0, s2 �= 2s1, s1 �= 2s2. (28)

The first two conditions have already been encoutered in the precedent
subsection in dimension n = 1: once again, they are the consequence of the
assumption of hyperbolicity of the fixed point, stating that we are not at a
(marginal) bifurcation point. The last two conditions are new and result
from extending the dimension to n = 2. They are called in the remainder
resonance condition, and they reflect the fact that the eigenvalues may
share a commensurability relationship. Hence they are completely different
from the hyperbolicity condition. When such a relationship exists between
the eigenvalues, e.g. when s2 = 2s1, the analysis shows that the system
can not be linearized. More precisely, a monom, present in the original
equations, can not be cancelled because it is resonant through the eigenvalue
relationship, and thus strongly couple the two equations. In the analysis,
the resulting normal form keeps the monom and the dynamics is different
from a linearizable case. For example, in the case s2 = 2s1 (assuming
s1, s2 �= 0), the system can be simplified at best to:

Ẏ1 = s1Y1, (29a)

Ẏ2 = s2Y2 + a211Y
2
1 . (29b)

The resonance condition can be understood in the following manner: from
the first equation we have Y1(t) ∝ exp s1t. Reporting in the second equation,
the nonlinear term makes appear a term proportional to exp 2s1t = exp s2t.
Consequently the nonlinear term in (29b) may be interpreted as a forcing
term, acting precisely at the resonance eigenvalue s2 of the second equa-
tion. The solutions of this nonhomogeneous differential equation lead to
secular terms, which explains why the monom can not be cancelled. These
resonance conditions are further analyzed in subsection 2.4, devoted to vi-
bratory systems.

This subsection reveals the core of Poincaré and Poincaré-Dulac theo-
rems. When no resonance condition exist between the eigenvalues, then
the system is equivalent to a linear one (Poincaré). In case of resonance
relationships, the system can be simplified thanks to successive nonlinear
transforms. Only the resonant monoms stay in the resulting so-called nor-
mal form of the problem (Poincaré-Dulac).
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2.3 General case: Poincaré and Poincaré-Dulac theorems

We are now in position to extend the result to a general case in dimension
n. Let us denote the dynamical system as:

Ẋ = F(X) = LX+N2(X) + ...+Np(X) (30)

where X ∈ E (E ≡ R
n otherwise stated), L, the linear part, is assumed to

be diagonal2, with L ≡ diag(sp), Np denotes the terms at order p.
The generalization of the resonance condition reads, for a given order of

nonlinearity p ≥ 2:

sj =
∑
i

nisi, ni ≥ 0,
∑
i

ni = p. (31)

Note that the cancellation of non-resonant monoms via nonlinear trans-
formations, is realized sequentially, order by order, so that the resonance
condition appears by increasing orders p. For p=2, Eq. (31) make appear
the conditions sj = 2si encountered on the precedent example, as well as a
case involving three eigenvalues: si = sj + sk, that can be found only when
the dimension is such that n ≥ 3.

When no resonance condition of the form (31) exist between the eigen-
values of the system, Poincaré theorem states that a nonlinear transform,
X = Y + g(Y) exist, such that the dynamics for the new coordinate Y is
linear and simply writes: Ẏ = LY. This theorem has been extended by
Dulac in 1917 to the case of the existence of resonance condition, stating
(Poincaré-Dulac theorem) that a nonlinear transform X = Y + g(Y) exist
such that the resulting system for the new variable Y is still nonlinear but
drastically simplified as compared to the original, as it contains only the
resonant monoms that can not be cancelled. In both cases, the simplified
system Ẏ = f(Y) is called the normal form of the original system. In the
simplest case the normal form is a linear system, in the other cases it con-
tains only the resonant monoms, resulting from the resonance conditions
between the eigenvalues.

These theorems are very strong in the sense that they underline the fact
that, in the vicinity of a particular solution, the eigenspectrum completely
determines the nonlinear part. This means in particular that, from the

2The particular cases where the linear operator is not diagonalisable are not treated

here for the sake of brevity. The normal form theory applies in these cases as well,

one has just to use the Jordan representation of the linear operator to obtain generic

cases, some examples can be found in classical textbooks, see e.g. Iooss and Adelmeyer

(1998); Manneville (2004); Wiggins (2003).
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knowledge of the eigenvalues, one is able to construct the normal form of the
system by deriving the resonant monoms. One must keep however in mind
that the theory is local only, and is valid only in the vicinity of a particular
solution. Finally, the method for demonstrating the theorems is a sequential
calculations that treats by successive orders of nonlinearity the monoms Np

appearing in the dynamical system (30). This sequential calculation can be
automatized by using symbolic toolbox softwares, nonetheless it becomes
more and mode difficult with increasing orders. And it shows that the
method do not lend itself to a numerical treatment if one would like to find
numerically the nonlinear change of coordinates.

2.4 Application to vibratory systems, undamped case

The case of vibratory systems displaying quadratic and cubic nonlineari-
ties, is now examined, following the general notation stated in the introduc-
tion, Eq. (2). At present damping is not considered, in order to introduce
properly the concepts and the Nonlinear normal modes. The results are
extended to dissipative vibratory systems in subsection 2.8. In this sub-
section, the presentation follows closely the theoretical results published in
Touzé et al. (2004).

The eigenvalues of a vibratory system are complex conjugate, ±iωp,
p=1, ...N. To compute the normal form of Eq. (2), a first idea would be to
follow strictly the general framework sketched in the precedent subsection.
This would mean to express Eq. (2) as:

Ẋ = F(X) = LX+N2(X) +N3(X), (32)

where the linear part L is diagonal, and thus reads: L = diag{±iωp}. For
example, this framework has been first used by Jézéquel and Lamarque
(1991), to express how the nonlinear normal modes can be introduced from
the framework provided by normal form theory. However a different choice
is retained here. The linear part will be retained as it is when the system
is written at first-order by using the velocity Yp = Ẋp as auxiliary variable,
i.e. a block-diagonal matrix, each block being written as:(

0 1
−ω2

p 0

)
(33)

This choice is done in order to avoid introducing complex quantities in
the calculations. It allows also to have equations that will be of oscillator
form at each stage of the calculation, so that the auxiliary variable can
always be cancelled in order to recover oscillator-like equations beginning
with Ẍ + X + .... This so-called real formulation allows simpler physical
interpretation of the different terms, as it will be shown next.
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A second point of interest is a consequence of the purely imaginary eigen-
spectrum. With regard to the resonance relationships highlighted in the
previous subsection, it appears that a complete linearization is not possible
in any case for a conservative vibratory system. Indeed, if only one oscillator
equation is considered, then one can always fulfill the following relationship
between the two complex conjugate eigenvalues {+iω, −iω}:

+iω = +iω + iω − iω. (34)

i.e. a relationship of the form (31) with order p=3. Coming back to the
oscillator equation, this means that the Duffing equation:

Ẍ + ω2X + αX3 = 0, (35)

is under its normal form, the cubic term (monom associated with the res-
onance relation (34)) can not be cancelled through a nonlinear transform.
On a physical viewpoint, this stands as a good news. Indeed, one of the
most important observed feature in nonlinear oscillations is the frequency
dependence upon vibration amplitude. If the system could be linearized,
this would mean that the underlying dynamics is linear, hence the frequency
should not change with the amplitude. Note that this frequency dependence
on amplitude is the main topic of section 3, and thus is deeply investigated
there.

In the general case where N oscillator-equations are considered, numer-
ous resonance relationships of the form:

+iωp = +iωp + iωk − iωk, (36)

are possible, for arbitrary p, k ∈ [1, N ]2. This means that the original system
(2) can be simplified, but numerous terms will remain at the end of the
process, in the normal form, following Poincaré-Dulac theorem. However, as
it will be shown next, the game is worth the candle, as numerous important
terms will be cancelled, and also because the remaining terms can be easily
interpreted.

Before stating the main result, a last point must be underlined. The
resonance relationships put forward through Eqs (34)-(36) are denoted as
trivial: they exist whatever the values of the frequencies of the studied
structure are. A second family of resonance relationships may arise from
internal resonances between the eigenfrequencies of the system. For exam-
ple, order-two internal resonances reads, for arbitrary (p, i, j):

ωp = ωi + ωj , ωp = 2ωi, (37)
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while third-order (linked to cubic nonlinear coupling terms) writes, for ar-
bitrary (p, i, j, k):

ωp = ωi + ωj ± ωk, ωp = 2ωi ± ωj , ωp = 3ωi. (38)

These internal resonances may exist, or not, depending on the eigenfrequen-
cies of the structure. In the remainder of the lecture, a clear distinction is
thus made between trivial resonance relationships and internal resonance.
The main result is given for the case where no internal resonance exist in
the system. The case of their presence is not problematic and is handled in
subsection 2.5.

Let us give the general result. Considering a vibrating system of N
oscillator-modes, written as a first-order dynamical system by keeping oscil-
lator-blocks in the linear part (real formulation), and assuming no internal
resonance between the eigenfrequencies {ωp}p=1...N , a nonlinear transform
can be found in order to cancel the maximum number of quadratic and cubic
coupling terms present in the original system. The nonlinear transform
reads, up to order three:

Xp= Rp +

N∑
i=1

N∑
j≥i

(apijRiRj + bpijSiSj)

+

N∑
i=1

N∑
j≥i

N∑
k≥j

rpijkRiRjRk +

N∑
i=1

N∑
j=1

N∑
k≥j

up
ijkRiSjSk,

(39a)

Yp= Sp +

N∑
i=1

N∑
j=1

γp
ijRiSj +

N∑
i=1

N∑
j≥i

N∑
k≥j

μp
ijkSiSjSk +

N∑
i=1

N∑
j=1

N∑
k≥j

νpijkSiRjRk.

(39b)

In these equations, the new-defined variables, Rp and Sp, are respectively
homogeneous to a displacement and a velocity. They are called the nor-
mal coordinates. The coefficients of this non-linear change of variables
(apij , bpij , rpijk, up

ijk, γp
ij , μp

ijk, νpijk) are given in Appendix A, as well
as in Touzé et al. (2004). the complete proof leading to Eqs. (39) is given
in Touzé (2003).

The normal form is found by substituting for Eq. (39) in (2), and reads:
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∀ p =1, ... , N :

Ṙp =Sp, (40a)

Ṡp =− ω2
pRp − (Ap

ppp + hp
ppp)R

3
p −Bp

pppRpS
2
p

−Rp

[ N∑
j>p

[
(Ap

jpj +Ap
pjj + hp

pjj)R
2
j +Bp

pjjS
2
j

]

+
∑
i<p

[
(Ap

iip +Ap
pii + hp

iip)R
2
i +Bp

piiS
2
i

]]

− Sp

⎡
⎣ N∑
j>p

Bp
jpjRjSj +

∑
i<p

Bp
iipRiSi

⎤
⎦ . (40b)

In these last equations, new coeffients (Ap
ijk, B

p
ijk) appear: they arise from

the cancellation of the quadratic terms, and write:

Ap
ijk =

N∑
l≥i

gpila
l
jk +

∑
l≤i

gplia
l
jk, (41a)

Bp
ijk =

N∑
l≥i

gpilb
l
jk +

∑
l≤i

gplib
l
jk. (41b)

Equations (39)-(40) constitutes the main result for vibratory systems. The
following comments are worth mentionable:
• Even though the last Eq. (40) appears longer on the page than the
original one (2), the reader must be convinced that it is simpler. In
particular, one can observe that a nonlinear term of the form R2

i

or R3
i does not exist anymore in the equation for the pth normal

coordinate Rp. These monoms are particularly important and are
called invariant-breaking terms. Their cancellation will be related to
nonlinear normal modes and invariant manifold in the next subsection.

• Thanks to the real formulation, oscillator-equations are obtained for
the normal form. One can easily recover second-order oscillator equa-
tions by substituting for (40a) in (40b). This formalism allows for
simple physical meaning of the different terms.

• Eq. (39) is identity-tangent: the linear results are thus recovered for
small amplitudes.

• Velocity-dependent terms arise in Eqs. (40) only if quadratic non-
linearity is present in the initial problem given by (2). For example, for
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Figure 3. Schematics of the system containing quadratic and cubic non-
linearities

a non-linear beam problem, for which gpij ≡ 0, no velocity-dependent
terms appear when considering the third-order approximation of the
dynamics onto invariant manifolds.

2.5 NNMs and Normal form

Nonlinear Normal Modes (NNMs) is the core of this CISM course on
Modal analysis of nonlinear systems. The main idea of defining a NNM is
to try extend to notion of linear normal modes at the nonlinear stage. Lin-
ear modes offer a very interesting basis for analyzing and understanding the
dynamics of linear systems. Their main property relies in the decoupling
of the equations of motion, resulting in superposition theorem. This decou-
pling can be interpreted, on a geometrical viewpoint, in the phase space of
the system, as an invariance property of the linear eigenspaces, which are
two-dimensional invariant planes of the linear system.

The idea of defining a non-linear normal mode is to extend the decoupling
of the linear eigenspaces exhibited at the linear stage. Letting gpij ≡ hp

ijk ≡ 0

in Eq. (2), and initiating a motion along the pth eigendirection results in a
motion which is always contained within it. This is the invariance property
one would be able to extend to the non-linear regime.

Let us introduce a simple two-dofs example in order to illustrate the
problem. The system, composed of a mass connected to two nonlinear
springs, is represented in figure 3. The dynamics of the system is described
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by :

Ẍ1 + ω2
1X1 +

ω2
1

2
(3X2

1 +X2
2 ) + ω2

2X1X2 +
ω2
1 + ω2

2

2
X1(X

2
1 +X2

2 ) = 0,

(42a)

Ẍ2 + ω2
2X2 +

ω2
2

2
(3X2

2 +X2
1 ) + ω2

1X1X2 +
ω2
1 + ω2

2

2
X2(X

2
1 +X2

2 ) = 0,

(42b)

where X1 = x1/l0 and X2 = x2/l0 have been nondimensionalized by the
length l0 of the springs at rest. The system is fully parameterized by the two
eigenfrequencies (ω1, ω2). The phase space is R4, so that illustration of the

Figure 4. Trajectories (closed periodic orbits) of the linear system, rep-
resented in space (X1, Y1, X2). Motions along the first linear mode with
initial conditions X1(t = 0) = 0.01, 0.025 and 0.05. The linear eigenspace
is represented by the horizontal plane X2 = 0. The trajectories initiated
along the linear mode stay within for al time t (invariance property).

complete phase space is not possible. Figure 4 shows, in a selected subspace
(X1, Y1, X2), with Y1 = Ẋ1, three trajectories of the corresponding linear
system, where quadratic and cubic terms have been cancelled. The linear
modes of the system corresponds to purely vertical and purely horizontal
motions of the mass. In phase space, the linear eigenspaces are the two-
dimensional planes, respectively defined by X2 = Y2 = 0 for the first mode,
and X1 = Y1 = 0 for the second mode. The three trajectories have been
computed for three initial conditions X1(t = 0) = 0.01, 0.025 and 0.05
(all other coordinates equal to zero). As awaited for the linear system, the
motion initiated in the first linear mode stay in this plane for all time t: this
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is the invariance property, that results from the decoupling of the system
at the linear stage.
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Figure 5. Trajectories of the nonlinear system, Eqs. (42). Motions initiated
in the first linear mode with initial conditions X1(t = 0) = 0.01, 0.025 and
0.05 (all other coordinates to zero), illustrating the non-invariance of the
linear eigenspace for the nonlinear system.

Let us consider now the complete nonlinear system. We repeat the
same numerical experiment, that is to say we compute the three trajectories
corresponding to an initial condition in the first linear mode with increasing
amplitudeX1(t = 0) = 0.01, 0.025 and 0.05. The corresponding trajectories
are reported in Fig. 5. As the first one with the smallest amplitude stay
in the vicinity of the linear eigenespace, it is very clear from the other two
that the invariance property is not fulfilled anymore, as the trajectories
are whirling around the linear eigenspace. It is worth mentionable that this
behaviour only results on the presence of the invariant-breaking term X2

1 on
the second oscillator-equation (42b): as energy is fed on the first oscillator
along the first linear mode, the term X2

1 transfers a small amount of energy
and excites the oscillations around the second coordinate, thus violating the
invariance property.

Invariance can be recovered by selecting another set of initial conditions.
Figure 6 shows the trajectories computed for (X1, X2)=(0.01,0) ; (0.025,
2.3*10−5) and (0.05, 1.8*10−4), i.e. the same amplitude for X1 but with a
small, selected perturbation on X2, which allows recovering closed periodic
orbits. The figure illustrates the dual definition of a NNM for conservative
system, which can be viewed either as a family of periodic orbits, or as an
invariant manifold, tangent at origin to the corresponding linear eigenspace.

As noted previously, the invariant-breaking terms are cancelled with the
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Figure 6. Trajectories (closed periodic orbits) of the nonlinear system, Eqs.
(42). Motions initiated in the first nonlinear normal mode with initial con-
ditions (X1, X2)=(0.01,0) ; (0.025, 2.3*10−5) and (0.05, 1.8*10−4). Shaded
surface: invariant manifold (first NNM).

change of coordinates of the normal transformation, as long as no inter-
nal resonances are present between the eigenfrequencies. Fig. 7 presents a
schematical representation of the phase space and a geometrical interpre-
tation of the normal form transformation. As expressed with the modal
coordinates, the equations of motion are written in a phase space which
is spanned by the linear eigenspaces (two-dimensional planes parameterized
by (Xp, Yp)). Due to the presence of invariant-breaking terms, when the dy-
namics is expressed with these coordinates, linear modes are not invariant
in the nonlinear regime. To recover invariance, the idea is to span the phase
space with the NNMs (the invariant manifold) of the system, sketched as
M1 and M2 in Fig. 7. The normal transformation is the key for express-
ing the new, normal coordinates (linked to the invariant manifolds), to the
original, modal ones. The transformation is nonlinear, expressing the fact
that the invariant manifolds are curved subspaces. The nonlinear transform
cancels the invariant-breaking terms. The dynamics, expressed with the
normal coordinates, is hence written in a curved invariant-based span of
the phase space.

The invariance property is key for allowing one to operate proper trun-
cations. Indeed, when working out with real systems emanating from the
discretization of continuous structures, one is led to manipulate an a priori
infinite number of modes which must be truncated for numerical treatments.
The results shown here with a simple two-dofs system can easily extend to
systems with numerous dofs that can be decomposed in subgroups. Due to
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Figure 7. Schematic representation of a four-dimensional phase space for
illustrating the normal transform. Two-dimensional manifolds rare repre-
sented by lines. (X1, X2, Y1, Y2): modal coordinates, cartesian grid: mesh
generated by the linear eigenspace parameterization. M1, M2: invariant
manifolds. (R1, R2, S1, S2): normal coordinates. Curved grid associated to
the invariant-based span of the phase space.

the presence of invariant-breaking nonlinear terms, truncations on the dy-
namics expressed with the modal coordinates leads to simulate trajectories
that do not exist in the complete phase space. On the other hand, once the
dynamics expressed in the curved, invariant-based span, proper truncations
can be realized, as the trajectories simulated with the truncated system cor-
responds to those of the complete system. This remark is very important
and will be the key to derive accurate reduced-order models that are able
e.g. to predict the correct type of nonlinearity for a given set of coupled
oscillators.

( X  ,  Y  )

Dynamical system
(physical co−ordinates)

i i

Non−linear change of
co−ordinates

Normal dynamics

X   
Y

R
S Study

Reduced−order
models

direct study :

many d.o.f.

( R(t) , S(t) )( X(t), Y(t) )
inverse variable change

Figure 8. Illustration of the nonlinear transform for derivation of reduced-
order models.
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Fig. 8 illustrates the general idea for deriving accurate reduced-order
models (ROMs) thanks to normal form theory. As compared to reduction
methods derived by using a linear change of coordinates (e.g. projection
onto the linear mode basis, or Proper Orthogonal Decomposition (POD)
method), the idea here is to use a nonlinear change of coordinates. Once
the system expressed in its normal form, the truncations can be realized
as one is ascertained of an accurate and meaningful result thanks to the
invariance property. In that respect, the method proposed here can thus be
sumed up as using a more sophisiticated, nonlinear transformation, before
realizing the truncations.

The next subsection considers the simplest case where the motion is
reduced to a single NNM. More complicated cases involving internal reso-
nances are handled in subsection 2.7, as well as in section 4 with applications
to shells.

2.6 Single-mode motion

In order to restrict the dynamics to a single NNM, one has just to proceed
as usual with the normal coordinates. As invariance is recovered, to study
e.g. pth NNM, all the other coordinates k �= p need to be cancelled:

∀k �= p : Rk = Sk = 0, (43)

Susbtituting for (43) in (39) gives the geometry of the manifold in phase
space (approximated at third order):

∀ k �=p :

Xk = akppR
2
p + bkppS

2
p + rkpppR

3
p + uk

pppRpS
2
p , (44a)

Yk = γk
ppRpSp + μk

pppS
3
p + νkpppSpR

2
p. (44b)

This set of 2(N − 1) equations in a phase space of dimension 2N defines
the geometry of the invariant manifold, up to third order. Detailed compar-
isons with other computations led by different authors, have been realized.
In particular the invariant manifold procedure proposed by Shaw and Pierre
(1991) and its asymptotic development for solving out the Partial Differen-
tial Equation defining the geometry resolved in (Pesheck, 2000; Pesheck and
Pierre, 1997) gives exactly the same expressions. The same comparison has
also been realized with the NNM computation procedure with a multiple
scale approach, as proposed by Nayfeh and Nayfeh (1994), and once again
all coefficients match, evidencing the equivalence of the different methods.

The dynamics onto the pth manifold is found by substituting for (43) in
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(40), and reads

R̈p + ω2
pRp + (Ap

ppp + hp
ppp)R

3
p +Bp

pppRpṘp
2

= 0 . (45)

This procedure for reducing the dynamics to selected invariant sub-
spaces, is the key for deriving out proper reduced-order models that will
be able to reproduce all the qualitative and quantitative features of the
complete system. This point will be key for the remainder of the presenta-
tion. Note that the normal form theory provides the most complete picture
for expressing the NNMs of a system, as the nonlinear change of coordinate
(39) is a complete change, from the phase space into itself. It contains the
geometry of theN NNMs that are tangent at origin to the linear eigenspaces,
and thus can be viewed as ”extensions” of the linear modes. For recovering
results obtained with other methods, e.g. Shaw and Pierre (1991); Nayfeh
and Nayfeh (1994) from normal form theory, one has to restrict the results
to particular cases. On the other hand, extending the result obtained via,
e.g. the invariant manifold method, to more than one dof (at best N) is
generally a very tedious task, see (Pesheck, 2000; Jiang, 2004).

2.7 Classification of nonlinear terms, case of internal resonance

From all the results obtained in the previous subsection, one is now able
to draw out a classification of the nonlinear coupling terms appearing in the
equations of motion, in order to get a clear physical understanding of their
meaning on the dynamics. For that purpose, let us consider a general, two
dofs system with quadratic and cubic nonlinearities:

Ẍ1 + ω2
1X1 + g111X

2
1 + g112X1X2 + g122X

2
2

+ h1
111X

3
1 + h1

112X
2
1X2 + h1

122X1X
2
2 + h1

222X
3
2 = 0, (46a)

Ẍ2 + ω2
2X2 + g211X

2
1 + g212X1X2 + g222X

2
2

+ h2
111X

3
1 + h2

112X
2
1X2 + h2

122X1X
2
2 + h2

222X
3
2 = 0, (46b)

and let us focus on the first oscillator equation. The following classification
can be derived from the precedent results:
• The cubic terms X3

1 and X1X
2
2 are trivially resonant terms. they can

not be cancelled by the change of coordinate. Note that when no
internal resonance of order two are present, all the quadratic terms
can be cancelled by the normal transform.

• All the other terms can be cancelled by the normal transform. Among
them, the terms X2

2 and X3
2 are invariant-breaking terms: they are

source terms that couple equations 1 and 2, whatever a resonance re-
lationship between the eigenfrequencies exist or not. If no internal
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resonance exist, they are coined non-resonant coupling terms, other-
wise the coupling is stronger, energy is exchanged between the modes
and the terms are coined resonant coupling terms.

Let us consider now the case of internal resonance to explain how the
precedent results must be adapted. Let us assume for illustration that a rela-
tionship ω2 = 2ω1 exist between the two eigenfrequencies. This is a second-
order resonance relationship, which implies that quadratic terms won’t be
cancellable by the normal transform. To recover the resonant coupling terms
that will stay in the normal form (without making the complete calculation),
the following rule of thumb can be adopted. At the linear stage, the solution
for X1 and X2 reads: X1 ∼ exp±iω1t, X2 ∼ exp±iω2t. The nonlinear term
X2

1 behaves as (amongst other solutions) X2
1 ∼ exp 2iω1t = exp iω2t. Hence

this term can be viewed as a forcing term for the second oscillator equation,
which is moreover exactly tuned at its eigenfrequency, and thus will lead to a
resonance and the appearance of secular terms. This resonance is the key for
explaining why a small denominator problem appear when computing the
normal form, so that this term can not be removed. Following the same rea-
soning and considering now the monom X1X2, one can see that this term
can produce oscillatory motions like X1X2 ∼ exp i(ω2 − ω1)t = exp iω1t.
hence this term is a forcing term acting at the resonance frequency of the
first oscillator, thus it will stay in the first oscillator-equation in the nor-
mal form. As a conclusion, for that case ω2 = 2ω1, the normal form up to
quadratic term reads:

Ẍ1 + ω2
1X1 + g112X1X2 = 0, (47a)

Ẍ2 + ω2
2X2 + g211X

2
1 = 0, (47b)

At third order, the internal resonance ω2 = 2ω1 do not create new resonance
condition, so that the cubic terms can be treated as usual. the only difficulty
is to track to nonlinear coefficient of the normal form that corresponds to
the monoms which have not been cancelled. These terms are easily found
by looking at the formulas given in Appendix A. Then the complete normal
form up to order three can easily be written.

This example shows that the treatment of internal resonance is not made
too difficult with the formalism of normal form, contrary to the huge com-
plexities involved in other methods (invariant manifold, multiple scales) to
adapt their treatments to the case of internal resonance.

2.8 Damped systems

All the developments presented in the previous section have been ob-
tained under the assumption of a conservative system. Obviously when one
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deals with real structures, damping is at hand and should be considered, in
particular in the development of accurate reduced-order models. A simple
strategy is to build the ROM without considering the damping, with the
nonlinear change of coordinate presented in subsection 2.4. Then damp-
ing could be added on the normal form dynamics, i.e. on the reduced order
model, directly. However, numerical examples have shown that this method
underestimates the whole damping present in the structure (Touzé and Am-
abili, 2006)3. This underestimation is a consequence of the fact that a single
NNM merges the contributions of numerous linear normal modes. When
modal damping is added to each linear contribution, the decay rate of all
the linear modes that are gathered to create the selected NNM are somehow
added, so that the decay rate onto the manifold is not as simple as the initial
decay rate postulated for the linear modal coordinates. Hence the normal
form strategy must be adapted to handle the case of damped systems. The
presentation now follows closely the results published in Touzé and Amabili
(2006).

The starting point is now an assembly of N oscillator-equations, ex-
pressed within the modal basis, so that the linear coupling terms are diago-
nal. A modal damping is assumed so that the dynamics reads, ∀p = 1...N :

Ẍp+ω2
pXp+2ξpωpẊp+

N∑
i=1

N∑
j≥i

gpijXiXj+

N∑
i=1

N∑
j≥i

N∑
k≥j

hp
ijkXiXjXk = 0. (48)

Deriving a correct mechanical model of damping (including thermoelastic-
ity, viscoelasticity, fluid-structure interaction...) for a large class of structure
is an extremely difficult task, which also greatly depends on some specific
properties of the material used. The great majority of studies on vibra-
tions of continuous structures uses an ad-hoc viscous modal damping as
the one which is here postulated. It is assumed that the modal damp-
ing introduced gives an excellent approximation of the energy losses in the
considered structure, and has been finely tuned for each mode by any avail-
able method (numerical prediction or experimental fitting). Underdamped
eigenmodes, corresponding to oscillatory motions, are considered, so that:
∀p = 1...N : ξp < 1.

Being a linear term, the modal viscous damping has an effect on the
eigenvalues of the structures. For mode p, the two complex conjugated
eigenvalues reads (where i is such that i2 = −1):

λ±p = −ξpωp ± iωp

√
1− ξ2p (49)

3These examples will be shown in section 4.
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Besides the real part of Eq. (49) which controls the decay rate of energy
along the pth linear eigenspace, the imaginary part shows that the damping
also have an effect on the oscillation frequency. For numerous thin metallic
structures, the damping ratio ξp is very small for all p, so that the as-
sumption of a lightly damped system could be considered. In that case, a
first-order development of (49) shows that:

λ±p ≈ ±iωp − ξpωp +O(ξ2p), (50)

which shows that the correction on the frequency is at least a second-
order effect. For computing the normal form, the general formalism can
be adopted, excepting that now the eigenvalues are complex number with
real and imaginary parts. At first sight, the occurrence of the real part could
let us think that the trivial resonance relationships would be destroyed, as
they were a simple consequence of having a purely imaginary eigenspectrum.
However, the constraint that the normal form computed for the damped sys-
tem is an extrapolation of the undamped system, is assumed. This implies
that, by continuity, when the damping ratio ξp tends to zero, the new calcu-
lation must recover that obtained for the undamped system. In particular,
this condition involves that small denominator of the form 1/ξp are not al-
lowed in the calculation. Interestingly, these small denominators appears
only for the trivially resonant terms. Hence all the calculations are led with
the extra condition that when a coefficient in the normal form transform
scales as 1/ξp, then it must be cancelled, and the corresponding monom stay
in the normal form. By doing so, only the trivially resonant terms are kept,
and a continuity from undamped to damped real normal forms, is obtained.

The calculation proceeds in the same manner as in the conservative
case. It is still assumed that no internal resonance are at hand4 (the case
of internal resonance being easily treated as shown in subsection 2.7). The
non-linear change of co-ordinates reads:

Xp = Rp +

N∑
i=1

N∑
j≥i

(apijRiRj + bpijSiSj) +

N∑
i=1

N∑
j=1

cpijRiSj

+

N∑
i=1

N∑
j≥i

N∑
k≥j

(
rpijkRiRjRk + spijkSiSjSk

)

+
N∑
i=1

N∑
j=1

N∑
k≥j

(
tpijkSiRjRk + up

ijkRiSjSk

)
, (51a)

4Once again, for obtaining continuity with the conservative case, internal resonance

relationships are defined here only for the imaginary part (frequency) of the eigenvalues.
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Yp = Sp +

N∑
i=1

N∑
j≥i

(αp
ijRiRj + βp

ijSiSj) +

N∑
i=1

N∑
j=1

γp
ijRiSj

+

N∑
i=1

N∑
j≥i

N∑
k≥j

(
λp
ijkRiRjRk + μp

ijkSiSjSk

)

+
N∑
i=1

N∑
j=1

N∑
k≥j

(
νpijkSiRjRk + ζpijkRiSjSk

)
(51b)

The normal dynamics can thus be explicitely written: ∀p = 1...N :

Ṙp =Sp (52a)

Ṡp =− ω2
pRp − 2ξpωpSp −

(
hp
ppp +Ap

ppp

)
R3

p −Bp
pppRpS

2
p − Cp

pppR
2
pSp

−Rp

[ N∑
j>p

[
(hp

pjj +Ap
pjj +Ap

jpj)R
2
j +Bp

pjjS
2
j + (Cp

pjj + Cp
jpj)RjSj

]

+
∑
i<p

[
(hp

iip +Ap
iip +Ap

pii)R
2
i +Bp

piiS
2
i + (Cp

pii + Cp
ipi)RiSi

]]

− Sp

[ N∑
j>p

(
Bp

jpjRjSj + Cp
jjpR

2
j

)
+

∑
i<p

(
Bp

iipRiSi + Cp
iipR

2
i

)]
(52b)

The coefficients (Ap
ijk, Bp

ijk, Cp
ijk) arise from the cancellation of the

quadratic terms. Their expressions are:

Ap
ijk =

N∑
l≥i

gpila
l
jk +

∑
l≤i

gplia
l
jk, (53a)

Bp
ijk =

N∑
l≥i

gpilb
l
jk +

∑
l≤i

gplib
l
jk. (53b)

Cp
ijk =

N∑
l≥i

gpilc
l
jk +

∑
l≤i

gplic
l
jk. (53c)

As compared to the conservative case, introducing the damping in the
linear operator leads to a non-linear change of co-ordinates, Eq. (39), which
is now complete (in terms of the monoms (Ri, Sj)). The newly introduced
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coefficients: {cpij , αp
ij , β

p
ij , s

p
ijk, t

p
ijk, λ

p
ijk, ζ

p
ijk} bring a perturbation which

is at least of the order of the damping ratios {ξi}. More precisely, Eq. (39)
may be expanded as a power series of the small perturbative terms {ξi}. It is
then found that the coefficients that were non-zero in the conservative case
(i.e. {apij , bpij , γp

ij , r
p
ijk, u

p
ijk, μ

p
ijk, ν

p
ijk}) contains only even powers of the

damping ratios, and the new terms, {cpij , αp
ij , βp

ij , spijk, tpijk, λp
ijk, ζpijk},

contains only odd powers of the damping ratios. As a consequence, the
{Ap

ijk, Bp
ijk, Cp

ijk} terms defined in Eqs. (53), can also be expanded as

power series of the damping ratios. It is then found that {Ap
ijk, B

p
ijk} con-

tains only even powers of the damping ratios and may be sorted according
to O(ξ0i ), O(ξ2i ), O(ξ4i ), ... So that, in the limit of a conservative systems,
Ap

ijk and Bp
ijk tends to a non-zero value. On the other hand, Cp

ijk sorts

according to odd powers terms: O(ξ1i ), O(ξ3i ), O(ξ5i ), ... So that it is equal
to zero in the conservative case. Hence this ”damped” formulation allows
one to see the damped normal dynamics as a perturbation of the undamped
one, and could be use in great generality as the conservative results are
recovered by simply cancelling all the ξp.

Let us comment some of the differences brought by this new formulation.
To have a better picture, let us restrict ourselve to studying a single NNM,
labelled p (master mode), obtained by letting ∀k �= p,Rk = Sk = 0 in the

previous expressions. The geometry of the pth manifold in phase space now
reads:

∀ k �= p :

Xk = akppR
2
p + bkppS

2
p + ckppRpSp + rkpppR

3
p + skpppS

3
p + tkpppR

2
pSp + uk

pppRpS
2
p ,

(54a)

Yk = αk
ppR

2
p + βk

ppS
2
p + γk

ppRpSp + λk
pppR

3
p + μk

pppS
3
p + νkpppR

2
pSp + ζkpppRpS

2
p .

(54b)

As compared to the conservative case, Eq. (44), new coefficients (and thus
new monoms) appears. Secondly the already present coefficients, e.g. akpp,

bkpp, now depends on the damping values. An illustration of their dependence
is shown in Fig. 9, obtained for the two-dofs system presented in subsection
2.5. The equations of motion are given by Eqs. (42), and modal damping
of the form 2ξpωpẊp, is added on each equation, for p=1,2. The parameters
have been set to ω1 = 2, ω2=4.5. The first NNM is selected, so that p=1
and k=2. The figure shows the variation of the quadratic coefficients of the
first equation, a211, b

2
11 and c211, for two different cases. In Fig. 9(a), the

two damping coefficients have the same values, so that ξ1=ξ2=ξ, and ξ is
increased from 0 to 0.4, so that a system that is more and more damped
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is studied. When ξ1=ξ2=0, the conservative results are recovered: c211 is
equal to zero whereas a211, b

2
11 have a non-zero value. One can see that the

variations may be large for some of the coefficients, so that the geometry
of the manifold can be significantly changed when damping is increased. In
the second case, Fig. 9(b), the damping on the first linear mode is selected
at a constant, small value, ξ1=10−3, and ξ2 is raised from 0 to 0.4 in order
to simulate a situation where the slave mode is more and more damped, as
compared to the master. Here the variations are also found to be important
for large values of the damping.
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Figure 9. Variations of the coefficients a211, b
2
11 and c211, controlling the

quadratic part of the geometry of the first NNM, as functions of the damping
ratios, for the two-dofs system. Parameters are: ω1 = 2, ω2=4.5. (a):
variations for an increasing value of the two damping ratios taken as equal:
ξ1=ξ2=ξ. (b): variations for a fixed value ξ1=10−3 and an increasing ξ2.

The normal dynamics for a single NNM motion when damping is in-
cluded reads:

R̈p+ω2
pRp+2ξpωpṘp+

(
hp
ppp +Ap

ppp

)
R3

p+Bp
pppRpṘ

2
p+Cp

pppR
2
pṘp = 0. (55)

The new coefficients appearing in this equation, as compared to Eq. (45), is
Cp

ppp. Eq. (53c) reveals that Cp
ppp is constructed from all the values of the

ckpp, k=1...N, that also directly influences the geometry of the manifold, Eq.

(54a). The corresponding monom, R2
pṘp, can be interpreted as a nonlinear

damper. Hence the whole damping for the dynamics on the pth NNM
gathers a linear damping term, 2ξpωpṘp, defining the energy decay rate
onto the linear mode (remember that the change of coordinate is identity-
tangent), and a nonlinear damping term, Cp

pppR
2
pṘp, allowing for a more

precise definition of the global decay rate onto the manifold, taking into
account all damping terms of the linear contributions that are included in
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the construction of the NNM. The coefficients Ap
ppp and Bp

ppp, now depends

on the damping in a manner that is proportional to akpp and bkpp, so that their
variations can be inferred from Fig. 9. These coefficients are responsible
for the type of nonlinearity (hardening/softening behaviour) of the NNM,
so a more complete study is postponed to the next section which is entirely
devoted to this problematic.

2.9 Closing remarks

The main theoretical results for deriving a normal form approach for
nonlinear normal modes, has been shown in this section. The remainder
of the lecture is devoted to applications of the results obtained. Some of
the assumptions made in this section can be easily relaxed to extend the
generality of the results. In particular, the special case of structural sys-
tems with quadratic and cubic nonlinearities, Eqs. (48), has been here as-
sumed as it contains the great majority of applications to thin structures
like beams, plates and shells, vibrating at large amplitudes. However, more
general cases including for example nonlinear damping monoms of the form
ẊiXj (quadratic) or ẊiXjXk, ẊiẊjXk are of course amenable to a solu-
tion following the same steps. Another limitation could appear through the
asymptotic develoments, systematically stopped at third order. Once again,
this limitation can be overcome by pushing further the developments, which
is not a theoretical problem, but may appear as more and more difficult, due
to the complexity one has to faced, e.g. by pushing up to order 5. More-
over, the legitimate question is to know if the game is worth the candle.
Asymptotic expansions up to order five realized for computing the NNMs
with the center manifold technique by Shaw and Pierre (1993) show that
the gain in accuracy brought by the fifth-order is not significative, and in
some cases can be poorest than the third-order. Closer investigations on the
validity limits of normal form approach by Lamarque et al. (2012), as well as
thorough comparisons between asymptotics and numerical computation of
NNMs by Blanc et al. (2013), appears to reach the same conclusion, that is
to say that pushing further the asymptotics may lead to small improvments
as compared to the computational effort needed. In the remainder of the
lecture, the third-order expansion will thus always be used for applications.

3 Hardening/softening behaviour

This section is entirely devoted to the correct prediction of the type of
nonlinearity (hardening/softening behaviour) for the modes of an assembly
of N nonlinear oscillator equations as in Eq. (2). NNMs and normal form



www.manaraa.com

104 C. Touzé

are used to derive a proper, easy-to-use and almost analytical method. The
presentation in subsections 3.1 and 3.2 recalls the main results obtained
by Touzé et al. (2004). The next subsection 3.3 with applications to shells
gives the main results published by Touzé and Thomas (2006); Thomas
et al. (2005), while subsection 3.4 gathers important results published by
Touzé and Amabili (2006) on the influence of the damping.

3.1 Definition

In nonlinear vibrations, the oscillation frequencies of a system depend
on vibration amplitude, a feature that has no counterpart in linear theory.
This dependence can be of two different types. Either a hardening behaviour
is at hand, which implies that the oscillation frequency increases with the
amplitude, or a softening type nonlinearity is present, which means that the
oscillation frequency decreases with the amplitude. This behaviour can be
easily illustrated with the Duffing oscillator:

Ẍ + ω2
0X + αX3 = 0. (56)

A perturbation method (multiple scales, Poincaré-Lindstedt, Averaging, ...)
can be used in order to derive the first-order relationship between the non-
linear oscillation frequency, denoted ωNL, and the amplitude a of the oscil-
lation frequency, which reads: X(t) = a cos(ωNLt+φ)+O(a2). We obtain:

ωNL = ω0

(
1 +

3α

8ω2
0

a2
)
. (57)

This equation clearly shows that a hardening behaviour is obtained when
α > 0, which also explains the origin of the vocable ”hardening”: when
α > 0, the nonlinear stiffness of the oscillator can be written as ω2

0X(1 +
α
ω2

0
X2), which means that the more X is large (the particle is far from the

equilibrium position), the more the spring is stiff: the stiffness term has
thus a ”hardening behaviour”. On the other hand when α < 0, the more
X is large the less the restoring force is important, and consequently the
oscillation frequency decreases with vibration amplitude.

Let us consider now the case of a single nonlinear oscillator with quadratic
and cubic nonlinearities. We can for example assume that the system (2) has
been reduced to a single linear mode, say number p, and thus the dynamics
reads:

Ẍp + ω2
pXp + gpppX

2
p + hp

pppX
3
p = 0. (58)

The frequency-amplitude relationship in this case writes:

ωNL = ω0

(
1 + Γ̃pa

2
)
, with Γ̃p =

1

8ω2
p

(
3hp

ppp −
10gppp

2

3ω2
p

)
. (59)
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One can see that the quadratic and cubic coefficients have opposite effects
on the type of nonlinearity.

However, as it has been shown previously, linear eigenspaces are not
invariant subspaces. Hence reducing a system of N linear oscillator as Eq.
(2) to a single linear mode, in order to predict the type of nonlinearity of
the selected mode, may lead to erroneous results. The main reason comes
from the non-invariance: as the trajectories computed with Eq. (58) do not
exist for the complete system, there is no reason that the type of nonlinearity
match. On the other hand, if one uses the NNMs, as invariance is recovered,
the type of nonlinearity can be predicted, and for the same complexity
at hand. Indeed, using the formalism presented previously, reducing the

dynamics to the pth NNM leads to still consider a single oscillator equation,
but inside wich all the non-resonant couplings have been included. The
dynamics for a single NNM is given in Eq. (45). A first-order perturbative
method then leads to the following relationship:

ωNL = ω0

(
1 + Γpa

2
)
, with Γp =

3(Ap
ppp + hp

ppp) + ω2
pB

p
ppp

8ω2
p

. (60)

In this equation, on can see that the influence of all the slave linear modes
(used to construct the corresponding NNM) are enclosed in the Ap

ppp and
Bp

ppp coefficients. Their variation is thus key to properly predict the type of
nonlinearity. From Eqs. (41), and substituting the expressions of appp and
bppp from the nonlinear transform (see Eqs.(107) in appendix A), Ap

ppp and
Bp

ppp can be explicited as:

Ap
ppp =

N∑
l=1

2ω2
p − ω2

l

ω2
l (ωl − 2ωp)(ωl + 2ωp)

(gppl + gplp)g
l
pp, (61a)

Bp
ppp =

N∑
l=1

2

ω2
l (ωl − 2ωp)(ωl + 2ωp)

(gppl + gplp)g
l
pp. (61b)

Note that for applying these formulae, the implicit convention used through-
out the notes: gpij = 0 when i > j, must be applied.

These expressions call for the following comments:
• Considering one single mode, say p, in the original equations of motion,

would lead, by substitution, to recover the type of nonlinearity given
in Eq. (59). The summations, in the case of a N -dofs system, clearly
shows how all the slave modes can influence the type of nonlinearity.

• The expressions in Eqs (61) shows that in case of internal resonance,
a small denominator effect appears, leading to a divergence in the
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expressions of appp and bppp, and thus on the predicted type of non-
linearity Γp. Even though this is in the line of all the calculations
presented, a further comment is needed. Interestingly, there is only
one kind of internal resonance, namely 2:1 resonance, which have an
influence on the type of non-linearity. When studying the pth mode,
only the lth modes, whose eigenfrequencies are such that ωl = 2ωp,
are able to significantly change the value of Tp. Other second-order
internal resonances, e.g. ωp = 2ωl, or ωl + ωm = ωp, are not able to
produce a small denominator and to change the value of Tp. Finally,
third-order internal resonances have no influence since only the first
order correction to the backbone curve is studied (Eq. (60)).

• In case of 2:1 internal resonance, the system cannot be reduced to a
single NNM. Morevover, perturbative studies shows that in the 2:1 in-
ternal resonance case, due to the presence of invariant-breaking terms,
only coupled solutions exist. Thus the type of non-linearity, which is
a notion associated to the backbone curve of a single oscillator, does
not have anymore meaning.

The next subsection considers a two-dofs example in order to better
highlight the main features of the method. Then continuous structures
with an infinite number of dofs will be considered. The method of normal
form for NNMs will there find a very good application, as it provides a
reliable and efficient method to predict properly their type of nonlinearity.

3.2 A two dofs example

The two dofs system composed of a masse connnected to two nonlinear
springs, whose equations of motions are given in Eqs. (42), is once again
considered.

Considering the first linear mode leads to a dynamics governed by:

Ẍ1 + ω2
1X1 +

3ω2
1

2
X2

1 +
ω2
1 + ω2

2

2
X3

1 = 0 (62)

The backbone curve in this case reads:

ω̃NL = ω1

(
1 + (−3

4
+

3ω2
2

16ω2
1

)a2
)
, (63)

where ω̃NL stands for the non-linear angular frequency found with a linear
mode approximation, and a is the amplitude of the motion considered: X1 =
a cos(ω̃NLt+ β0) + ...
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In the parameter plane (ω1, ω2), regions of hardening or softening be-
haviour are governed by the sign of:

Γ̃1 = −3

4
+

3ω2
2

16ω2
1

(64)

Considering now the first non-linear mode, which is the right approxi-
mation if one is interested in a motion non-linearly vibrating along the first
physical mode, indicates that the oscillations are governed by Eq. (45),
with p = 1. Computing the coefficients and replacing in Eq. (60) shows
that the hardening or softening behaviour onto the first invariant manifold
is determined by the sign of:

Γ1 = −3

4
+

3ω2
2

16ω2
1

+
ω2
2(8ω

2
1 − 3ω2

2)

16ω2
1(ω

2
2 − 4ω2

1)
(65)
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Figure 10. Regions of hardening/softening behaviour in the parameter
plane (ω2

1 , ω
2
2), for the two-dofs system. Yellow: hardening behaviour, blue:

softening behaviour. Left: prediction given by the sign of Γ̃1, i.e. with
truncation to the first linear mode. Right: prediction given by the sign of
Γ1, i.e. for oscillatory motions along the first NNM.

The behaviour of Γ̃1 shows that a hardening behaviour is found when ω2

is large as compared to ω1, otherwise a softening behaviour is at hand. This
can be easily understood by comparing the quadratic and cubic coefficients
of the oscillator-equation (62). On the other hand, the prediction for hard-
ening/softening region in parameter space with a single NNM truncation
shows clearly the correction brought by considering properly the bending
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of the phase space caused by the presence of the second oscillator. More
specifically, this effect can be drastic and can change the effective behaviour
of the non-linear oscillations. Figure 10 shows the hardening and softening
region in the two cases (simply given by the signs of Γ̃1 in the linear case,
and Γ1 in the non-linear case). One can notice for example the upper-left
region, which is predicted to exhibit a hardening behaviour by the linear
approximation, whereas the real behaviour is soft.

In order to have a better picture of the behaviour of the type of non
linearity versus the two parameters (ω1, ω2) of the system, Figure 11 shows
two cuts in this two-dimensional parameter plane, namely for fixed ω2=2
and ω1 variable, then for fixed ω1=

√
0.5 and ω2 variable, i.e. along the

two lines indicated in Fig. 10. These cuts reveals that the behaviour of Γ̃1

is monotone, whereas Γ1 shows a singularity, occuring for ω2 = 2ω1, i.e.
at the 2:1 internal resonance between the two eigenfrequencies. As already
underlined, in the vicinity of this internal resonance, the concept of the
type of nonlinearity loses its meaning because the dynamics is essentially
two-dimensional and cannot be reduced to a single NNM. However, far from
the 2:1 resonance, the predicted type of nonlinearity from the single NNM
solution is reliable, and depart from the approximation given by considering
a single linear mode.
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Figure 11. Type of nonlinearity for the two-dofs example, comparison
between the prediction given by a single linear mode, Γ̃1, versus the correct
prediction given by a single NNM, Γ1. (a): ω2=2, ω2

1 ∈ [0, 5], (a): ω1=
√
0.5,

ω2
2 ∈ [0, 5]

3.3 Application to shells

The method shown previously for predicting accurately the type of non-
linearity, is now applied to the case of spherical-cap thin shallow shells with
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a varying radius of curvature R. Flat plates are known to exhibit a harden-
ing behaviour,as it has been shown both theoretically and experimentally,
see e.g. Tobias (1957); Yamaki (1961); Pandalai and Sathyamoorthy (1973);
Sridhar et al. (1975); Touzé et al. (2002); Thomas et al. (2003), which means
that the leading cubic coefficient hp

ppp is positive. Introducing a radius of
curvature R, going to infinity (perfect plate) to finite values (spherical-cap
shells) introduces an asymmetry in the restoring force, due to the loss of
symmetry of the neutral plane of the shell. In turn, quadratic nonlinearity
appears in the equations of motions, with a magnitude proportioanl to 1/R.
The type of nonlinearity is thus awaited to vary from hardening to softening
type, depending on the selected mode and the geometry. The aim of this
subsection is to derive properly the prediction of this type of nonlinearity
for spherical shells, with the formalism of NNMs and normal form.

The model is based on von Kármán kinematical assumptions on the
strain-displacement relationship, in order to take into account moderately
large vibration amplitudes. The governing equations are first recalled, then
the Galerkin method is briefly reviewed in order to explain how to pass from
the PDE of motion to oscillator-equations having the form of Eqs. (2), then
finally the type of nonlinearity for some eigenmodes of the structure, are
given. A geometrical nondimensional parameter, inversely proportional to
the curvature of the shell, is introduced, in order to study how the type
of nonlinearity is modified when continuously transforming a thin circular
plate to a spherical-cap shell.

Von Kármán model

Von Kármán kinematical assumption relies in a clever simplification of the
general 3-D strain-displacement relationship, allowing to take into account
moderately large vibration amplitudes, where the coupling between in-plane
and transverse motions is taken into account. The model has first been writ-
ten for the static behaviour of plates (Kármán, 1910), and has then been
generalized to dynamical behaviour of plates and shells (Chu and Herrmann,
1956; Efstathiades, 1971). In this subsection we follow the derivations pro-
posed by Touzé and Thomas (2006). A spherical shell of thickness h, radius
of curvature R and outer diameter 2a, made of a homogeneous isotropic
material of density ρ, Poisson ratio ν and Young’s modulus E, see Fig. 12.
Numerous assumptions pertaining to the derivation of von Kármán model
–e.g. moderate rotations, in-plane inertia – are not recalled here for the sake
of brevity, the interested reader is referred to Chu and Herrmann (1956);
Efstathiades (1971); Touzé et al. (2002); Thomas et al. (2005); Thomas and
Bilbao (2008) for a more thorough description. About the geometry of the
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shell, it is assumed that:
• the shell is thin: h/a� 1 and h/R� 1;
• the shell is shallow: a/R� 1;

a

Rh

HM

w

r

Figure 12. Geometry of the shell: three-dimensional sketch and cross sec-
tion.

The equations of motion are given in terms of the transverse displace-
ment w(r, θ, t) along the normal to the mid-surface and the Airy stress func-
tion F (r, θ, t). This is a peculiarity of the von Kármán model, which allows
expression of the in-plane motions into the so-called Airy stress function F .
The equations of motion reads, for all time t:

DΔΔw +
1

R
ΔF + ρhẅ =L(w,F ), (66a)

ΔΔF − Eh

R
Δw =− Eh

2
L(w,w), (66b)

where D = Eh3/12(1 − ν2) is the flexural rigidity, ẅ is the second partial
derivative of w with respect to time, Δ is the laplacian and L is a bilinear
quadratic operator. With the assumption of a shallow shell fulfilled, the
spatial operators are written in polar coordinates, and thus reads:

Δ(·) = (·),rr + 1

r
(·),r + 1

r2
(·),θθ, (67)

and

L(w,F ) = w,rr

(
F,r

r
+

F,θθ

r2

)
+ F,rr

(w,r

r
+

w,θθ

r2

)

− 2
(w,rθ

r
− w,θ

r2

)(
F,rθ

r
− F,θ

r2

)
,

(68)

Eqs (66) express the dynamics of a spherical-cap shell, without external
forcing, nor damping terms. These equations are valid for plates as well,
which is obtained for a radius of curvature R going to infinity. This, in
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turn, simplifies two terms in (66). The linear remaining terms in Eq. (66a)
are the classical inertia and flexural rigidity, that one finds back in the lin-
ear Kirchhoff-Love model for vibration of plates. The linear coupling term
between Eqs (66a) and (66b), proportional to 1/R, expresses the linear cou-
pling between transverse and in-plane motions, which exist for shells only.
For plates, these terms vanish. Finally, the nonlinear coupling term reflects
the nonlinear coupling between transverse and in-plane motions. One can
observe that for shells, this coupling implies quadratic and cubic terms for
the displacement w, whereas for plates, only cubic terms are present.

Dimensionless variables are introduced as:

r = a r̄ , t = a2
√
ρh/D t̄ , w = h w̄ , F = Eh3 F̄ (69)

Substituting the above definitions in equations of motion (66a,b) and drop-
ping the overbars in the results, one obtains:

ΔΔw + εq ΔF + ẅ = εc L(w,F ), (70a)

ΔΔF −√κΔw = −1

2
L(w,w), (70b)

where the aspect ratio κ of the shell has been introduced:

κ =
a4

R2 h2
(71)

As it will be shown next, for a fixed value of the Poisson ratio ν, all the
linear results (eigenfrequencies and mode shapes), as well as the type of
non-linearity, only depend on κ, which is the only free parameter related to
the geometry of the shell. The two other parameters εq and εc appearing
in Eq. (70) are equal to:

εq = 12(1− ν2)
a2

Rh
= 12(1− ν2)

√
κ, εc = 12(1− ν2). (72)

Their subscripts comes from the fact that they balance respectively the
quadratic and the cubic terms in the non-linear ordinary differential equa-
tions governing the dynamics of the problem (see Eq. (75)).

Linear analysis

All the analysis is here performed for a free-edge boundary condition. It is
derived by vanishing, at the edge r = 1: the membrane forces, the bending
moment, the twisting moment and the transverse shear force. They are not
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recalled here for the sake of brevity, the interested reader can found the
complete expressions in (Thomas et al., 2005; Touzé and Thomas, 2006).

The linearized equations of motion are analyzed to derive the eigenmodes
and eigenfrequencies of the problem, as a function of the geometry. The
eigenmodes are the solutions of:

ΔΔΦ+ χΔΨ− ω2Φ = 0, (73a)

ΔΔΨ = ΔΦ. (73b)

where Φ refers to the eigenmodes of the transverse motion and Ψ to those
of the membrane motion. The coefficient χ = 12(1 − ν2)κ is the only pa-
rameter of the linear problem. All the study could have been realized by
taking χ as the geometrical parameter, as it is sometimes done by various
authors (Evensen and Ewan-Iwanowsky, 1967; Gonçalves, 1994). However,
the results will be presented as functions of κ, in order to set apart the ma-
terial property which appear through the Poisson ratio ν in the expression
of χ. In the remainder of this study, ν is kept constant at ν = 0.33.

Figure 13. Three representative mode shapes of a circular spherical thin
shallow shell with free edge: axisymmetric mode (0,1), purely asymmetric
mode (2,0) and mixed mode (1,1).

Transverse and membrane mode shapes are numbered Φ(k,n) and Ψ(k,n)

where k is the number of nodal diameters and n the number of nodal cir-
cles. Axisymmetric modes are such that k = 0. For k ≥ 1 (asymmetric
modes), the associated eigenvalue has a multiplicity of two, so that for each
eigenfrequency, there are two independent mode shapes, called preferential
configurations or companion modes. Among these modes, purely asymmet-
ric modes (such that k ≥ 2 and n = 0) are distinguished from mixed modes
(such that k ≥ 1 and n ≥ 1). Figure 13 shows representative pictures for
each of the three distinguished family. Mode (0,1) is axisymmetric, mode
(2,0) is a purely asymmetric one while (1,1) is a mixed mode.
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The complete linear analysis is provided by Thomas et al. (2005). It
shows that all deformed shapes, except membrane mode shapes for purely
asymmetric modes, have a negligible dependence on the geometrical param-
eter κ. This is illustrated in Fig. 14, showing the profile for r ∈ [0, 1] of two
different modes: Φ(2,0), the first purely asymmetric transverse mode, and
Ψ(2,0), the first purely asymmetric in-plane mode, for large variations of the
aspect ratio a/R between 0 and 0.6 (remind that the shallowness asummp-
tion implies a/R� 1). The dependence of Φ(2,0) with the geometry is very
slight, and this kind of behaviour is also found for all transverse modes, all
in-plane modes except purely asymmetric ones.
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Figure 14. Profiles of theoretical asymmetric (2,0) mode shape, for sev-
eral values of a/R between 0 and 0.6: (left) transverse mode and (right)
membrane mode.

On the contrary, the eigenfrequencies dependence on the aspect ratio
κ, represented on Fig. 15, shows a different behaviour, which leads to
classify the modes into two families. The first family contains the purely
asymmetric modes, since their eigenfrequencies display a slight dependence
on curvature. The second family contains axisymmetric and mixed modes.
They show a huge eigenfrequency dependence on curvature.

Modal expansion

The complete non-linear equations of motion (70) are projected onto the
natural basis of the transverse eigenmodes. The displacement is thus written
as:

w(r, θ, t) =
+∞∑
p=1

Xp(t) Φp(r, θ), (74)

where the subscript p refers to a specific mode of the shell, defined by a
couple (k, n) and, if k �= 0, an additional binary variable which indicates the
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Figure 15. Dimensionless natural frequencies ωkn of the shell as a function
of the aspect ratio κ, for ν = 0.33.

preferential configuration considered (sine or cosine companion mode). The
modal displacements Xp are the unknowns, and their dynamics is governed
by: ∀ p ≥ 1:

Ẍp + ω2
pXp + εq

+∞∑
i=1

+∞∑
j=1

gpijXiXj + εc

+∞∑
i=1

+∞∑
j=1

+∞∑
k=1

hp
ijkXiXjXk = 0. (75)

The expression of the non-linear coefficients are:

gpij = −
∫∫
S⊥

ΦpL(Φi,Ψj) dS

− 1

2

+∞∑
b=1

1

ξ4b

∫∫
S⊥

L(Φi,Φj)Υb dS

∫∫
S⊥

ΦpΔΥb dS, (76)

hp
ijk =

1

2

+∞∑
b=1

1

ξ4b

∫∫
S⊥

L(Φi,Φj)Υb dS

∫∫
S⊥

ΦpL(Φk,Υb) dS. (77)
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The Υn, as well as its associated zero ξn, are defined in (Thomas et al.,
2005). S⊥ is the domain defined by (r, θ) ∈ [0 1]× [0 2π[.

Now that the PDE has been reduced to nonlinear oscillator equations,
the formalism of NNMs and normal form can be applied to derive the type of
nonlinearity for each mode of the shell. The type of nonlinearity is dictated
by the sign of:

Tp =
1

8ω2
p

[
3(Ap

ppp + εch
p
ppp) + ω2

pB
p
ppp

]
, (78)

where the expressions for Ap
ppp and Bp

ppp are given as in Eq. (61):

Ap
ppp =ε2q

+∞∑
l=1

2ω2
p − ω2

l

ω2
l (ω

2
l − 4ω2

p)
(gppl + gplp)g

l
pp , (79)

Bp
ppp =ε2q

+∞∑
l=1

2

ω2
l (ω

2
l − 4ω2

p)
(gppl + gplp)g

l
pp . (80)

Before showing the results, two important comments are worth mention-
able:
• The nonlinear coefficients gpij and hp

ijk shows a very slight dependence
on the curvature of the shell. This is the consequence of the slight
dependence of the mode shapes with the aspect ratio, as the non-
linear coefficients are computed from integrals involving the mode
shape functions (Eqs (76-77)). Hence the main effect of the shell’s
geometry on the trend of non-linearity is described by the relative
variations of the eigenfrequencies, shown on Fig. 15.

• As it appears in Eqs (79-80), when studying the trend of non-linearity
of the pth mode, one has to keep all the l modes such that glpp �= 0, and
gppl �= 0 or gplp �= 0. As shown by Thomas et al. (2005), a number of

coefficients {gpij}p,i,j≥1 are equal to zero due to the rotational symme-
try of the structure. The conditions for these quadratic coefficients to
be non-zero are expressed in terms of the number of nodal diameters
kl and kp of the l and p modes. They read:
(i) glpp �= 0 if kl ∈ {2kp, 0}.
(ii) gppl �= 0 or gplp �= 0 if kp ∈ {kl + kp, |kl − kp|}.
These rules show that two classes of modes have to be retained when
studying the type of non-linearity of the pth mode: axisymmetric (kl =
0) as well as asymmetric modes having twice the number of nodal
diameters (kl = 2kp). No other mode has an influence on the type of
non-linearity.
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In the remainder of the study, N will refer to the number of modes
retained in this specific subset composed of the pertinent ones with respect
to the type of non-linearity.

From circular plates to spherical-cap shells
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Figure 16. Type of nonlinearity for mode (4,0) as function of the geo-
metrical parameter κ. N=1: system truncate to linear mode (4,0). N=2:
truncation including (4,0) and (0,1). N=3: (4,0), (0,1) and (0,2).

The type of nonlinearity is now computed for three different modes of the
shell, representing each of the three families. A purely asymmetric mode,
(4,0), is first selected. The variation of T(4,0) as function of κ is shown in
Fig. 16. According to the rules underlined for truncation, only axisymmetric
modes and asymmetric modes with eight nodal diameters, must be taken
into account. For κ=0, the shell is a perfect circular plate. In this case
the leading cubic coefficient is positive, so that a hardening behaviour is at
hand. The dashed line (N = 1) shows the prediction given by considering
only the linear mode for computing the type of nonlinearity. The correct
prediction is severely affected by the presence of 2:1 internal resonances,
creating discontinuities. For mode (4,0), only two 2:1 internal resonances
are possible with the modes that could interact to influence the type of
nonlinearity: with mode (0,2) at κ = 36.91, and with mode (0,1) at κ =
174.1. In conclusion for this purely asymmetric mode, one can underline the
fundamental importance of axisymmetric modes for an accurate prediction
of the type of nonlinearity. Secondly, hardening behaviour is observed until
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the 2:1 resonance with mode (0,1), where softening behaviour settles down.
Finally, The type of non-linearity tends to zero as κ tends to infinity.
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Figure 17. Type of nonlinearity for mode (0,1) as function of the geo-
metrical parameter κ. N=1: truncation containing only mode (0,1). N=7:
converged result with inclusion of the seventh first axisymmetric modes,
from (0,1) to (0,7).

The case of an axisymmetric mode is now considered with mode (0,1).
The coupling rules (i) and (ii), indicate that only axisymmetric modes have
to be kept. The main difference with the previous case is the behaviour of
the eigenfrequencies with respect to κ. As it can be seen on Fig. 15,
axisymmetric eigenfrequencies increase with curvature. Hence, an infinity
of 2:1 internal resonances are now possible, with all the other axisymmetric
modes.

The result of computation is shown on Fig. 17. It can be seen that
the effect of the geometry –the increase of κ– is much more pronounced
than for the asymmetric mode: the inital hardening behaviour (κ = 0)
becomes softening at κ = 1.93, and not because of a 2:1 internal resonance.
Two resonances, leading to a change in behaviour, are then shown: at κ =
35.97, where the following relationship is fulfilled: 2ω(0,1) = ω(0,2) = 43.21.
Then at κ = 230.1, where 2:1 resonance occurs with mode (0,3). These 2:1
resonances lead to a return to hardening behaviour. However, it occurs on a
very little interval, which is already negligible for the resonance with (0,2),
and completely negligible for (0,3). The next 2:1 resonances (with (0,4) at
κ = 756.9, with (0,5) at κ = 1871.5 ...) occur on intervals which are always
smaller and thus are not shown.

Single-mode prediction is also shown on Fig. 17. Although the 2:1
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resonances are missed, the general behaviour is correctly predicted: change
from hardening to softening due to curvature is found at κ = 1.95 instead
of κ = 1.93, and the asymptotic behaviour, which becomes neutral when κ
tends to infinity, is recovered. These results show that for the specific case of
the fundamental axisymmetric mode, the single-mode approximation, used
in the precedent studies (Grossman et al., 1969; Yasuda and Kushida, 1984;
Sathyamoorthy, 1994; Varadan and Pandalai, 1978), predicts the essential
features, in spite of a too severe truncation.
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Figure 18. Type of nonlinearity for mode (1,1) as function of the geo-
metrical parameter κ. N=1: truncation including only linear mode (1,1).
N=17: converged result including modes (1,1), (2,0) to (2,4) (with both
configurations), (0,1) to (0,5).

The case of a mixed mode, namely (1,1) is presented on Fig. 18. As for
the axisymmetric modes, the effect of geometry is important and leads to
a change of behaviour for a very small value of the aspect ratio: κ = 5.3.
Then 2:1 internal resonances occurs, with modes (2,2), (0,3), (2,3), (0,4),
... Their number is unlimited, as for the axisymmetric case. The change of
behaviour occurs on very small intervals. The first one, due to 2:1 resonance
with mode (2,2), is hardly negligible, and the others have no chance to be
experimentally measurable. It can be thus conclude that except on a very
small interval (κ ∈ [0 , 5.3]), mode (1,1) behaves in a softening way.

The single-mode approximation is also shown on Fig. 18. It predicts
a hardening behaviour which becomes neutral when κ tends to infinity.
The converged result is obtained for N = 17 modes, namely : (1,1); (2,0)
to (2,4); (0,1) to (0,5), and shows that, contrary to the precedent cases,
coefficient T(1,1) tends to a finite value when κ tends to infinity. Hence the
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behaviour remains softening and does not becomes neutral for large values
of the aspect ratio.

3.4 Influence of the damping

This subsection is devoted to studying the influence of the damping on
the type of nonlinearity. This problematic could appear unusual or ill-posed,
because the type of nonlinearity is generally defined for conservative systems
through the backbone curve. However, a more general view is needed to
tackle the cases of forced responses and/or dissipative free oscillations, where
the oscillation frequency also depend on vibration amplitude.

As it has been shown in subsection 2.8, the normal form theory with in-
clusion of damping allows extending the results continuously from conserva-
tive to dissipative systems. Moreover, a clear dependence of the coefficients
on the damping ratios, has been underlined. The aim of this subsection is
thus to show how this dependence can influence the type of nonlinearity.

For that purpose, let us consider the two-dofs system, Eqs. (42), with
inclusion of damping terms. The motions on the first NNM are governed
by the dynamical reduced equation:

R̈1+ω2
1R1+2ξ1ω1Ṙ1+

(
h1
111 +A1

111

)
R3

1+B1
111R1Ṙ

2
1+C1

111R
2
1Ṙ1 = 0. (81)

and the type of nonlinearity is given by the sign of Γ1:

Γ1 =
3(A1

111 + h1
111) + ω2

1B
1
111

8ω2
1

(82)

As a consequence of the particular behaviour of the A1
111 and B1

111 with
increasing values of ξ2, the type of non-linearity may change with increasing
damping. Figure 19 shows, for the two-dofs example with parameter values
ω1 = 3, ω2 = 5.4, and ξ1 = 0.001, that when ξ2 increases (simulating the
presence of a slave mode which is more and more damped) the type of non-
linearity of the first mode may be affected and change from hardening to
softening behaviour. In this case, it happens for ξ2 = 0.081, so that the
ratio of the two modal damping is equal to: ξ2/ξ1 = 81.

Another case is studied in Fig. 20, where now the two linear modal
damping coefficients ξ1 and ξ2 vary of the same quantity, so that the ratio
ξ2/ξ1 is kept constant. This more realistic case could for example simulate
a structure whose global damping is raised. Here again, it is also observed
that a global increase of the amount of damping have a significant effect on
the type of non-linearity. From these two examples, it is concluded that the
damping tends to enhance and favours the softening behaviour.
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Figure 19. Type of non-linearity Γ1, defined by Eq. (82), for increasing
values of ξ2. The behaviour turns from hardening to softening type for
ξ2 = 0.081. Other selected values are: ω1 = 3, ω2 = 5.4, and ξ1 = 0.001.
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Figure 20. Type of non-linearity Γ1 for increasing values of the global
damping in the system. The two modal damping values here are equal :
ξ1 = ξ2 = ξ. Other selected values are: ω1 = 3, ω2 = 5.4.

This particular effect of the damping on the type of non-linearity can
thus significantly change predictions based on the undamped system. Let
us now observe how the type of nonlinearity is modified on a section of the
map of nonlinearity as function of the two parameters (ω1, ω2), shown in
Fig. 10. More precisely, the line ω2=2 and varying ω1, already shown in
Fig. 11(a), is now considered, for a fixed value of ξ1=0.001, and increasing
values of ξ2. The results are given in Fig. 21.

When damping is not considered, the type of non-linearity Γ1 displays
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a discontinuity at the internal resonance value where ω1 = 1, ie. where 2:1
resonance occurs : ω2 = 2ω1. At this discontinuity point, the behaviour
changes abruptly from softening to hardening type. The discontinuity is
due to the presence of internal resonance which leads to small denomina-
tors in the solution. As already argued, in a small intervall near the 2:1
internal resonance point, single-mode solutions do not exist anymore, and
the concept of the type of non-linearity loses its meaning.
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Figure 21. Type of non-linearity for different values of ξ2, illustrating the
fact that the discontinuity at the 2:1 internal resonance is smoothened by
increasing the damping of the slave oscillator. ω2 = 2 and ξ1 = 0.001.

Here, it is shown that taking into account the whole damping of the
structure smoothens the discontinuity. For increasing values of ξ2, Figure 21
shows that the region of hardening behaviour after the 2:1 internal resonance
decreases, and can even disappear, which happens here for ξ2 = 0.1. This
is a reflection of the fact that increasing ξ2 changes the second eigenvalue
λ±2 = −ξ2ω2 ± iω2

√
1− ξ22 , so that the eigenvalues of the damped system

stem apart from the resonance condition so that the discontinuity due to
the small denomitar smoothens.

From this study, it can be concluded that a careful prediction of the
type of non-linearity must include the damping in the analysis. Examples
on continuous structures (imperfect plates dans spherical shells), are shown
by Touzé et al. (2008b), underlining that the results obtained here with the
two-dofs system generalize.
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3.5 Closing remarks

A general strategy has been proposed for deriving the type of nonlinear-
ity of an assembly of nonlinear oscillator equations, based on normal form
theory and reduction to a single NNM. With this method, the same com-
plexity is at hand as compared to predictions given by using a single linear
mode, as a single oscillator equation is used for the prediction, so that an-
alytical results are derived without resorting to time-consuming numerical
simulations including the N oscillator equations. As shown by several au-
thors, see e.g. Nayfeh et al. (1992); Nayfeh (1995); Nayfeh and Lacarbonara
(1997); Touzé et al. (2004), using a single LNM can lead to erroneous results
in the prediction. The reason is the non invariance of the linear eigenspace,
as shown in the previous section. The effect of the other modes on the
type of nonlinearity, has been underlined, in particular the presence of 2:1
internal resonance.

This section has revealed that using NNMs for reduced-order modeling
appears as an appealing method. Indeed, one is at least ascertained to
predict the correct type of nonlinearity with the reduced model. For the last
section of this lecture, the focus is on the derivation of ROMs for structural
systems in forced vibration. The case of harmonic forcing, in the vicinity of
one eigenfrequency, is studied. This will allows to demonstrate the ability of
ROMs based on NNMs to properly recover a complete bifurcation diagram.

4 Reduced-order models for resonantly forced
response

The goal of this section is to use the reduced-order modelling strategy based
on NNMs and normal form theory, in order to compute the harmonically
forced response of thin structures, vibrating at large amplitudes and excited
in the vicinity of one of its eigenfrequency. Applications to shells will be
specifically shown, and a comparison with the Proper Orthogonal Decom-
position (POD) method will highlight the benefit of using NNMs in this
case. In the first subsection, the derivation of the ROM is briefly reviewed
and the advantage of using the normal form method including the damping
is shown on a two-dofs example. The presentation in subsection 4.1 recalls
some of the results published by Touzé and Amabili (2006). Subsection
4.2 selects one of the examples shown in (Touzé et al., 2008a) for illustra-
tion. Subsection 4.3 with application to a closed circular cylindrical shell is
taken from Touzé and Amabili (2006), while the comparison with the POD
method in the last subsection is published in (Amabili and Touzé, 2007).
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4.1 Derivation of the reduced-order model

The previous developments have clearly highlighted the general method
for deriving the ROM, shown schematically in Fig. 8. From a Partial Dif-
ferential Equation, the first step is a projection onto the basis of the linear
eigenmodes. The second step is to use the normal transform in order to ex-
press the dynamical equations in an invariant-based span of the phase space.
The last step consists in truncating the system by keeping the resonnant
NNMs. All the examples used consider the case of a harmonic external
forcing, the frequency of which is in the vicinity of an eigenfrequency of
the selected structure. In the simplest case, when no internal resonance is
present among the eigenfrequencies of the shell, only the NNM whose eigen-
frequency is near the excitation, has to be kept in the truncation, so that
a very simple ROM, consisting of a single oscillator-equation, is derived.
This case will be illustrated in subsection 4.2 with a doubly-curved panel.
If internal resonance exists, then all the NNMs, the frequencies of which are
contained in the internal resonance, must be kept in the truncation. This
case will be illustrated in subsection 4.3, where the ROM of an asymmetric
mode of a closed circular cylindrical shell, is considered. Due to the rota-
tional symmetry of the circular shell, asymmetric modes appears by pairs
of companion modes, in the same manner as what has been observed in
circular plates and shells in subsection 3.3. Hence a 1:1 internal resonance
is present and two NNMs must be retained in the truncation.

Two main assumptions are thus retained in the derivation of the ROM:
• A third-order asymptotic expansion is used for the normal transform.
Hence all the results are a priori accurate up to order three. In particu-
lar, the proposed method shows the best results for systems containing
quadratic and cubic nonlinearities, as the correction brought by the
quadratic term on the cubic nonlinearities is well taken into account.
For systems containing only cubic nonlinearity, the improvement as
compared to linear mode truncation, is important for the transforma-
tion only, but not for the dynamical solutions. When considering large
amplitude vibrations, this third-order limitation can become problem-
atic in terms of accuracy of solutions.

• Application of the proposed ROMs to real situations leads to consider
external forces applied to the structure. On the mathematical view-
point, external forces must be taken into account in the normal form
computation, as proposed for example by Elphick et al. (1987). How-
ever, it overshoots the mark of the present study, since the formulation
must turn to definitions of time-dependent invariant manifolds. In the
mechanical context, time-dependent manifolds have been computed
e.g. by Jiang et al. (2005), requiring a huge computational effort,
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since the numerical procedure must be repeated for each forcing fre-
quency. Moreover, a consequence of the numerical procedure is that
the results are no more expressed under a differential formulation,
which renders parametric studies numerically expensive.

In this study, the ROM will be obtained by adding the external
force directly to the normal form. The main advantage is that the
calculation derived in section 2 is intrinsical to the structure, whereas
rigorous computations including the external force must be done for
each type of forcing studied. Secondly, the perturbation brought by
the external force onto the normal form is at least a second-order effect
(Iooss and Adelmeyer, 1998). Hence, this first approximation will be
used to derive simple ROMs, and the results presented in the next
sections shows that qualitative and quantitative results are generally
obtained.

Before applicating the method to thin shells, a justification for using the
normal form with damping is in order. Indeed, the same reasoning made for
the external forcing could also have justified a more simple treatment of the
damping terms. The ROMS could have been built for the system without
damping, using the formulas exposed in subsection 2.4, and then damping
and external forces could have been added directly to the normal form. This
method will be coined the ”conservative NNM” method in the following, and
will be compared to the second strategy, termed ”damped NNM” formal-
ism, where the damping is included in the normal transform, as shown in
subsection 2.8. For that purpose, the two-dofs example consisting of the
mass connected to the two nonlinear springs, is used for illustration. The
equations of motion, given in Eqs. (42), are completed by adding damping
and forcing terms, and reads:

Ẍ1 + ω2
1X1 + 2ξ1ω1Ẋ1 +

ω2
1

2
(3X2

1 +X2
2 )

+ ω2
2X1X2 +

ω2
1 + ω2

2

2
X1(X

2
1 +X2

2 ) = F1 cos(Ωt), (83a)

Ẍ2 + ω2
2X2 + 2ξ2ω2Ẋ2 +

ω2
2

2
(3X2

2 +X2
1 )

+ ω2
1X1X2 +

ω2
1 + ω2

2

2
X2(X

2
1 +X2

2 ) = 0. (83b)

The forcing is considered on the first mode only, and the excitation frequency
is such that Ω ≈ ω1.

Three different truncations, having the same complexity (a single non-
linear oscillator equation), are used as reduced-order models. The first one
is the most simple, and consists in keeping only the linear mode by imposing
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X2 = 0:

Ẍ1 + ω2
1X1 + 2ξ1ω1Ẋ1 +

3ω2
1

2
X2

1 +
ω2
1 + ω2

2

2
X3

1 = F1 cos(Ωt) (84)

The second ROM, following the ”conservative NNM” method, is found by
subsituting in Eqs. (45) and (61) the coefficients by their expressions. It
reads:

R̈1 + ω2
1R1 + 2ξ1ω1Ṙ1 +

[
ω2
2 − 2ω2

1

2
+

(2ω2
1 − ω2

2)

2(ω2
2 − 4ω2

1)
ω2
2

]
R3

1

+

[
−3 + ω2

2

ω2
2 − 4ω2

1

]
Ṙ2

1R1 = F1 cos(Ωt). (85)

Finally, the third ROM is found by applying the ”damped NNM” strat-
egy. It is given by Eq. (81), which is here recalled for p=1:

R̈1+ω2
pR1+2ξ1ω1Ṙ1+

(
h1
111 +A1

111

)
R3

1+B1
111R1Ṙ

2
1+C1

111R
2
1Ṙ1 = F1 cos(Ωt),

(86)
where A1

111, B
1
111 and C1

111 have not been replaced by their complete expres-
sions for that particular problem as their expressions are now too lengthy.
Note however that, as compared to (85), these coefficients now depends
explicitely on the damping. In Eq. (85) the only term producing an en-
ergy loss is 2ξ1ω1Ṙ1, whereas in (86), the additional term C1

111R
2
1Ṙ1 is also

dissipative, and depends on ξ1 and ξ2, so that a better approximation of
the whole damping in the system is awaited for the second ROM based on
”damped NNMs”.

The performance of the three ROMs are compared on Fig. 22, where the
parameter values of the system have been set to ω1=2, ω2=4.5, ξ1=0.001,
ξ2=0.01, so as to simulate the presence of a damped mode and its influence
on the frequency-response curve of the first mode. The forcing is such that
Ω ∼ ω1, and the amplitude is set as F1=5.10−4 for that first simulation.
The solutions of each model is obtained by continuation of periodic orbits,
and the software AUTO is used for that purpose. The reference solution
is of course obtained with the complete system, Eqs. (83). One can see
that the linear mode truncation predicts an incorrect hardening behaviour,
in the line of the results already obtained in the precedent section, and
is thus not reliable. On the other hand, the two ROMS based on NMMs
predict the correct type of nonlinearity. The ROM constructed with the
”conservative NNM” method underestimates the damping in the system,
and gives a maximum amplitude which is slightly larger that the reference
solution. This means that taking into account only 2ξ1ω1Ṙ1 as dissipative
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Figure 22. Frequency-response curves (maximum of the first coordinate
X1 versus excitation frequency Ω). Thick solid line : reference solution.
Thin blue solid line :”damped NNM”, Eq. (86). Dash-dotted green line :
”conservative NNM”, Eq. (85). Magenta dash-dotted thin line: linear mode
truncation, Eq. (84). Selected values: ω1=2, ω2=4.5, ξ1=0.001, ξ2=0.01,
F1=5.10−4.

term in the ROM is an incorrect estimation of the whole damping present
in the system. The ROM constructed with the ”damped NNM” method
gives a very satisfactory result. The slight differences observed with the
reference solution can be attributed to the two main assumptions made in
the construction of the ROM, i.e. the third-order asymptotic development
and the time-independent approximation of the manifold.

These trends are enhanced when the amplitude of the forcing is increased
to F1=1.10−3, as shown in Fig. 23. In this case, the two ROMs: linear
and ”conservative NNM” give unaceptable result. The ROM constructed
with the ”damped NNM” method shows a correct behaviour, even though
the slight discrepancies already observed for F1=5.10−4 are now clearly
observable.

In the remainder of this section, the reduced-order modeling strategy is
applied to thin shells including a priori an infinite number of dofs. Trun-
cations to one or two NNMs are realized. As numerous modes, with in-
creasing values of their modal damping factor, will be gathered in a single
NNM, the ”damped NNM” strategy is systematically used. The examples
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Figure 23. Frequency-response curves (maximum of the first coordinate
X1 versus excitation frequency Ω). Same as Fig. 22, except the amplitude
of the forcing which have been increased: F1=1.10−3.

shown herein underline the importance of having a correct estimation of the
damping onto the manifold.

4.2 Application : the case of a doubly-curved panel with in-plane
inertia

A hyperbolic paraboloid panel with rectangular base, referred to as the
HP panel in the following, is first selected. Frequency response curves, in
the vicinity of its fundamental mode, will be computed for different ROMs.
A sketch of the shell is shown in Fig. 24. The curvilinear coordinate system
is denoted by (O, x1, x2, z), with the origin O at one edge of the panel. R1

and R2 (assumed to be independent of x1 and x2) are the principal radii of
curvature, a and b are curvilinear length, and h is the thickness. The radii
of curvature are such that R1 = −R2. For the numerical results, dimensions
of the panel are selected as: a = b = 0.1 m, Rx = −Ry = 1 m, and thickness
h = 1 mm. The material is linear elastic with Young’s modulus E = 206.109

Pa, density ρ = 7800 kg.m−3 and Poisson’s ratio ν = 0.3.
Donnell’s non-linear shell theory is used for expressing the kinematics of

the shell. This modelisation is of larger extent than the von Kármán model
presented in subsection 3.3. Indeed, Donnell non-linear shell theory do not
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Figure 24. Geometry and coordinate systems for the selected shells.

neglect the in-plane inertia, and can thus be used with confidence for non-
shallow shell and on a wider range of displacement amplitudes (and/or a
larger range of midfrequencies). The membrane displacements are denoted
by u and v, and the normal displacement is w. Boundary conditions are
simply supported.

The drawback of retaining in-plane inertia is that additional degrees of
freedom must be taken into the expansion as a consequence that the sim-
plified Donnell’s shallow-shell formulation cannot be used. Secondly, the
computation of the eigenmodes can become more difficult. For these rea-
sons, ad-hoc expansion functions are here used for discretizing the problem.
The basis functions used here are :

φ(u)
m,n(x1, x2) = cos(mπx1/a) sin(nπx2/b), (87a)

φ(v)
m,n(x1, x2) = sin(mπx1/a) cos(nπx2/b), (87b)

φ(w)
m,n(x1, x2) = sin(mπx1/a) sin(nπx2/b). (87c)

The three displacements are denoted as: w for transverse motions, u and v
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for in-plane motions. They are expanded as:

u(x1, x2, t) =

Mu,Nu∑
m,n=1

umn(t)φ
(u)
mn(x1, x2), (88a)

v(x1, x2, t) =

Mv,Nv∑
m,n=1

vmn(t)φ
(v)
mn(x1, x2), (88b)

w(x1, x2, t) =

Mw,Nw∑
m,n=1

wmn(t)φ
(w)
mn(x1, x2). (88c)

The number of basis functions in each direction is free and governed by the
integers Mu, Nu, Mv, Nv, Mw, and Nw.

Let q be the vector of generalized coordinates, gathering together all the
unknown functions of time introduced by the expansions given in Eqs. (88):

q = [um,n, vm,n, wm,n]
T
, m = 1, ...Mu, Mv, Mw, n = 1, ...Nu, Nv, Nw.

(89)
In the remainder, P refers to the dimension of q, i.e. the number of gen-
eralized coordinates used for discretizing the shell. The generic element of
q is denoted by qp. Finally, in the three considered cases, the result of the
discretization gives a set of coupled non-linear oscillator equations to solve.
They writes:

q̈p+2ζpωpq̇p+

P∑
i=1

zpi qi+

P∑
i,j=1

zpi,jqiqj+

P∑
i,j,k=1

zpi,j,kqiqjqk = fp cos(ωt). (90)

Modal damping in Eq. (90) is considered in the classical form 2ζpωpq̇p, and
f = [f1 ... fP ]

T is the vector of the projected external forcing considered.
The reference solution is obtained by simulating Eqs. (90). For deriv-

ing the bifurcation diagram for the panel (or the frequency response curve
in forced vibration), a numerical solution is obtained by using a pseudo-
arclength continuation method implemented in the software AUTO (Doedel
et al., 2002). The convergence of the solutions with respect to the number P
of generalized coordinates retained has already been done in previous stud-
ies. It has been shown that, for the HP panel, P = 22 basis functions were
needed for obtaining convergence (Amabili, 2005). As a consequence of this
large value, computation time associated with the numerical simulations
with AUTO for obtaining a single frequency-response curve are large.

The first idea for reducing the size of the system is to use the linear nor-
mal modes (LNMs). Let L = [zpi ]p,i be the linear part of Eq. (90), and P the
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matrix of eigenvectors (numerically computed) of L such that: P−1LP = Λ,
with Λ = diag

[
ω2
p

]
, and ωp the eigenfrequencies of the structure. A lin-

ear change of coordinates is computed, q = PX, where X = [X1 ... XP ]
T

is, by definition, the vector of modal coordinates. Application of P makes
the linear part diagonal, so that the dynamics can now be expressed in the
eigenmodes basis, and reads, ∀p = 1, ..., P :

Ẍp + 2ζpωpẊp + ω2
pXp +

P∑
i,j=1

gpijXiXj +

P∑
i,j,k=1

hp
ijkXiXjXk = Fp cos(ωt).

(91)
The application of P let the viscous damping unchanged, and F =

P−1f = [F1 ... FP ]
T is the new vector of modal forces. The quadratic and

cubic non-linear coupling coefficients {gpij} and {hp
ijk} are computed from

the {zpi,j} and {zpi,j,k} appearing in Eq (90) with matrix operations involving
P. The dimension of X is P , but truncation can now be realized by keeping
any number of LNMs. Let PLNM be the dimension of the truncation oper-
ated in X. Convergence studies will be realized by increasing PLNM from 1
to P . Since the LNMs possesses some interesting properties (in particular
orthogonality), it is awaited to obtain convergence for PLNM ≤ P .

Finally, from Eqs. (91), the NNM method with normal form is applied
to obtain a more severely reduced order model. For selecting the number
of NNMs for building the ROMs, one needs to know the eigenfrequencies
in order to test the presence of internal resonance before proceeding. With
dimensions and material properties as chosen, the fundamental frequency
is 488.1 Hz. Nondimensionalizing the frequencies by the first one, it re-
sults that the list of frequencies are, for the six first: 1, 5.18, 5.18, 9.01,
46.22, 78.05. The fundamental mode (simply supported boundary condi-
tion) appears as a ”breathing mode” without nodal lines. Then a degenerate
eigenvalue with multiplicity two is observed, corresponding to two modes
with a nodal line either on the x1 or x2 direction. In particular no simple
internal resonance exists between the first mode and the next. Hence the
simplest model, including a single NNM, is selected and should be able to
catch the main features of the dynamics of the resonant response.

The response of the HP panel to harmonic excitation in the vicinity of
the first eigenfrequency ω1 is numerically computed. The convergence of
the solution has been carefully studied by Amabili (2005) for an excitation
amplitude f̃ of 4.37 N applied at the center of the panel. It has been
shown that 22 basis functions were necessary to obtain convergence. More
precisely, the generalized coordinates retained for this reference solution are:
w1,1, w1,3, w3,1, w3,3, u1,1, u3,1, u1,3, u3,3, u1,5, u5,1, u3,5, u5,3, u5,5, v1,1,
v3,1, v1,3, v3,3, v1,5, v5,1, v3,5, v5,3, v5,5. The damping parameter ζp has
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been set to 0.004 for each mode: ∀p = 1...22, ζp = 0.004.
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Figure 25. Frequency-response curve for the HP panel, harmonically ex-
cited in the vicinity of the first eigenfrequency ω1. The reference solution
is compared to the solution given by keeping a single linear mode (LNM)
or a single NNM. The excitation amplitude is f̃ = 4.37 N. Point (A), with
ω = 1.3ω1, is used for time integration, see Fig. 27.

Figure 25 shows the frequency-response curve for the reference solution,
with 22 basis functions. As a single NNM ROM is awaited to give good
results, it is decided to compare two ROMs having the same complexity (a
single nonlinear oscillator equation). The first one is obtained by keeping
in the truncation only the first LNM (PLNM = 1). Eqs (91) are restricted
to the first one :

Ẍ1 + 2ζ1ω1Ẋ1 + ω2
1X1 + g111X

2
1 + h1

111X
3
1 = F1 cos(ωt). (92)

Branches of solution are numerically obtained by continuation with AUTO,
then the original coordinates are recovered via: q = PX, where, in X, only
the first coordinate X1 is different from zero.

The second reduced-order model is obtained by keeping the first NNM:
Eqs. (52) are truncated by letting Rp = 0, ∀p = 2...22. The dynamics onto
the invariant manifold is then governed by :

R̈1+2ζ1ω1Ṙ1+ω2
1R1+

(
h1
111 +A1

111

)
R3

1+B1
111R1Ṙ

2
1+C1

111R
2
1Ṙ1 = F1 cos(ωt).

(93)



www.manaraa.com

132 C. Touzé

Eq. (93) is solved numerically with AUTO, then one uses Eqs. (39) to
come back to the modal coordinates, and finally the matrix of eigenvectors
P allows reconstitution of the amplitudes in the basis of selected projection
functions. Thanks to the non-linear nature of the change of variable (39),
all the modal amplitudes are non-zero.

Figure 25 shows the main coordinate w1,1, having the most significant re-
sponse. One can observe that the nonlinearity is of the hardening type, and
that the amplitude of the response, of the order of two times the thickness,
is large. For the ROMs, it is observed that whereas reduction to a single
linear mode gives poor result, reduction to a single NNM give a satisfactory
result, with a slight overestimation of the maximum vibration amplitude.
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Figure 26. Maximum amplitude of the response of 6 generalized coordi-
nates versus excitation frequency, for an excitation amplitude of f̃ = 4.37 N.
Reference solution (thick line) is compared to the reduction to a single lin-
ear mode (LNM) and a single non-linear mode (NNM). (a): maximum of
w1,1. (b): maximum of w3,1. (c): maximum of w1,3. (d): maximum of w3,3.
(e): maximum of u1,1. (f): maximum of v1,1.

Moreover, as shown in Figure 26, the reduced model composed of a single
NNM, thanks to the non-linear change of coordinate, allows recovering all
the other coordinates that are not directly excited. Fig. 26 shows the six
main coordinates, i.e. the first four coordinates in transverse direction,
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w1,1, w3,1, w1,3 and w3,3, as well as the first two longitudinal coordinates
u1,1 and v1,1. It is observed that with the NNM ROM, energy is recovered in
all the coordinates, with a good approximation of the original amplitudes.
On the other hand, for the model composed of a single linear mode, non-
zero amplitudes are recovered only on w1,1, u1,1 and v1,1, as these three
coordinates are linearly coupled to create the first eigenmode described by
X1 which is simulated. But a vanishing response is found with this LNM
ROM for w3,1, w1,3 and w3,3.

This first result emphasizes the main characteristic of the NNM ROM :
the geometrical complexity due to the curvature of the invariant manifold,
is first computed in the non-linear change of coordinates. Once the dy-
namics reduced to the manifold, a single oscillator equation is sufficient to
recover the dynamics. Then, coming back to the original coordinates allows
recovering energy onto the slave modes thanks to the non-linear projection.
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Figure 27. Time-domain response of 4 generalized coordinates of the HP
panel, excitation frequency ω = 1.3ω1, amplitude f̃ = 4.37 N. Reference
solution (thick line) is compared to the NNM solution (thin line), and the
LNM solution (dashed line).

The time solutions for the four most significant coordinates is shown in
Fig. 27. Once again, the reference solution is compared to the two reduced
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models composed of a single linear and non-linear mode. Time integrations
have been performed for f̃ = 4.37 N and ω = 1.3ω1 (Point (A) on Fig.
25). Whereas the reduction to a single linear mode is not acceptable, the
solutions provided by a single NNM are very good. Despite the fact that
only one oscillator-equation is simulated, a variety of complex signals are
recovered thanks to the non-linear change of coordinates.

The convergence of the solution with an increasing number of LNMs
is shown in Fig. 28 for the excitation amplitude of 4.37 N. It is found
that the convergence is very slow : 15 LNMs are necessary to obtain an
acceptable solution. The solution with 11 LNMs is qualitatively different
from the converged solution with a strange loop appearing in the frequency
response, and is thus not acceptable. Hence a very slow convergence with
respect to increasing PLNM is found, and using the linear normal modes is
not very favourable as compared to the projection functions used. On the
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Figure 28. Maximum amplitude response of w1,1 versus excitation fre-

quency for f̃ = 4.37 N, showing the convergence of the solution when in-
creasing PLNM . Reference solution (22 basis functions) is compared to
truncations with 1 linear mode, 5 LNM, 11 LNM and 15 LNM.

other hand, it has been found that increasing the number of NNMs kept
in the truncation in Eqs (52) do not change anything in the solution : the
added NNMs have been found to stay with constant neglectable amplitude,
and the same solution is found as the one obtained with a single NNM. This
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is a logical consequence of the invariance property of the NNMs. Hence the
solution with a single NNM seems to be the best ROM possible. The only
way to improve the results found here is not in increasing the number of
NNMs, but in overshooting the two limitations of the present approximation
used for generating the NNMs.

Finally, the robustness of the ROMs with respect to increasing the am-
plitude of the forcing, is studied. Fig. 29 shows the results obtained for a
lower excitation amplitude: f̃ = 2.84 N, and for a larger one: f̃ = 6.62 N.
For f̃ = 2.84 N, the result given by the NNM ROM is almost perfectly coin-
cident with the reference solution obtained with 22 basis function, whereas
the model with a single linear mode give unacceptable results. For the larger
amplitude, f̃ = 6.62 N, the result deteriorates for the NNM-reduced model,
which is not able to catch the saturation loop found by the reference solution
at the top of the frequency-response curve. The observation of the other
coordinates (not shown for the sake of brevity) shows that this loop reflects
the fact that most of the energy is, at this point, absorbed by the higher
modes, the amplitude of which significantly and abruptly increase. More
precisely, it appears that an internal resonance appears between nonlinear
frequencies of the system. Indeed, as the frequencies vary with amplitude,
they can fulfill a resonance relationship for a given vibration amplitude even
though the linear frequencies are not commensurate. The phenomena en-
countered here for this level of vibration appears to be of this type with
an important increase of energy exchanged from the fundamentally excited
modes to higher modes. Hence the reduced model should be changed to
catch this new phenomenon, but this appears to be over the scope of the
present study.

As a conclusion on the HP panel, the dynamics has been reduced from
22 dofs to a single NNM. Results shows that the reduction, computed with
an asymptotic expansion to approach the invariant manifold, gives very
good results for vibration amplitudes up to 1.5 times the panel thickness h.
Beyond this value, the two approximations used for generating the ROM
do not hold anymore. On the other hand, using truncations with LNMs
did not allow substantial improvement as compared to the selected basis
functions used for discretizing the problem.

4.3 Application : the case of a closed circular cylindrical shell

A water-filled perfect circular cylindrical shell, simply supported, and
harmonically excited in the neighbourhood of the fundamental frequency, is
selected in order to derive a NNM-based ROM for a continuous structure.
A detailed discussion on the model can be found in (Amabili, 2003; Amabili
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6.62 N. Reference solution (ref) is compared to truncations with a single
linear mode (LNM) and a single non-linear mode (NNM).

et al., 2003). Donnell’s non-linear shallow-shell theory is used to take into
account large amplitude motions, so that in-plane inertia, transverse shear
deformation and rotary inertia are neglected. Note that Donnell’s shallow-
shell theory is equivalent to von Kármán model already used in subsection
3.3, so that the equations of motion have the same form. For the transverse
deflection w(x, θ, t), it reads:

D∇4w+chẇ+ρhẅ = f−p+ 1

R

∂2F

∂x2
+

1

R2

[
∂2F

∂θ2
∂2w

∂x2
−2 ∂2F

∂x∂θ

∂2w

∂x∂θ
+
∂2F

∂x2

∂2w

∂θ2

]
,

(94)
where D is the flexural rigidity, E Young’s modulus, ν Poisson’s ratio, h the
shell thickness, R the mean shell radius, ρ the mass density, c the coefficient
of viscous damping, p the radial pressure applied to the surface of the shell
by the contained fluid, and f is a point excitation, located at (θ̃, x̃) :

f = f̃ δ(Rθ −Rθ̃)δ(x− x̃) cos(ωt). (95)

F is the usual Airy stress function, which satisfies the following compatibil-
ity equation:

1

Eh
∇4F = − 1

R

∂2w

∂x2
+

[(
∂2w

R∂x∂θ

)2

− ∂2w

∂x2

∂2w

R2∂θ2

]
. (96)

A circumferentially closed circular cylindrical shell of length L is consid-
ered. Mathematical expressions of boundary conditions are given in (Am-
abili et al., 2003, 2006). The contained fluid is assumed to be incompress-
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ible, inviscid and irrotational. The expression of p, which describes the
fluid-structure interaction, is given by Amabili (2003).

The PDE of motion is discretized by projection onto the natural modes
basis. The reference solution, whose convergence has been carefully verified
in (Amabili, 2003; Pellicano et al., 2002), is computed by keeping 16 natural
modes. The transverse deflection is thus expanded via:

w(x, θ, t) =

3∑
m=1

k=1

[Am,kn(t) cos(knθ) +Bm,kn(t) sin(knθ)] sin(λmx)

+
4∑

m=1

A(2m−1),0(t) sin(λ(2m−1)x), (97)

where n is the number of circumferential waves, m the number of longi-
tudinal half-waves (for symmetry reasons, only odd values are retained),
λm = mπ/L; Am,n(t) and Bm,n(t) are the generalized coordinates. By use
of the Galerkin method, 16 second-order differential equations are obtained.
They are in the form of the general equations used as the starting point of
this study, Eq. (2). The following correspondence between modal coordi-
nates is used: A1,n and B1,n are X1 and X2, A3,n and B3,n are X3 and
X4, A1,2n and B1,2n are X5 and X6, A3,2n and B3,2n are X7 and X8, A1,3n

and B1,3n are X9 and X10, A3,3n and B3,3n are X11 and X12, asymmetric
modes A1,0, A3,0, A5,0 and A7,0 are X13 to X16. Finally, modal damping is
postulated.

The reference solution is obtained for the following shell: L = 520 mm,
R = 149.4 mm, h = 0.519 mm, E = 2.06.1011 Pa, ρ = 7800 kg.m−3, ρF =
1000 kg.m−3 (water-filled shell), and ν =0.3. The excitation frequency ω
is set in the vicinity of the fundamental mode (n = 5, m = 1), whose
eigenfrequency is 79.21 Hz. Modal damping ξ1,n = 0.0017 is assumed. The
harmonic point excitation has a magnitude of 3 N and is located at x̃ = L/2
and θ̃ = 0. Finally, the displacements are normalized with respect to the
thickness h, and the time with respect to the period of the first eigenfre-
quency ω1,n. The frequency-response curves are numerically obtained with
the software AUTO.

The response of the shell in the vicinity of an asymmetric mode is in-
vestigated. As a consequence of the rotational symmetry displayed by the
shell, asymmetric modes appears by pairs, and 1:1 internal resonance exists
between each pair of companion modes. Hence, the minimal model which
could capture accurately the dynamics is composed of two NNMs. The
ROM is build by applying the non-linear change of co-ordinates, Eq. (39),
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to the dynamical systems, so that after this operation, the dynamics is writ-
ten in terms of the new coordinates (Rp, Sp) that are the continuation of the
linear ones. Thanks to the invariance property, the truncation can now be
done without losing important informations. Two couples of master coordi-
nates, (R1, S1) and (R2, S2) are selected, which are related to (A1,n, Ȧ1,n)

and (B1,n, Ḃ1,n). All other normal coordinates (Rp, Sp), for p ≥ 3, are set
to zero. The normal dynamics with these two master coordinates derives
from Eq. (52): one has just to write this system for p = 1, 2. The dynamics
onto this four-dimensional invariant manifold is thus governed by:

R̈1 + ω2
1R1+2ξ1ω1Ṙ1 + (A1

111 + h1
111)R

3
1 +B1

111R1Ṙ1
2

+ (A1
212 +A1

122 + h1
122)R1R

2
2 +B1

122R1Ṙ2
2
+B1

212R2Ṙ1Ṙ2

+ C1
111R

2
1Ṙ1 + (C1

122 + C1
212)R1R2Ṙ2 + C1

221R
2
2Ṙ1 = f cos(ωt)

(98a)

R̈2 + ω2
2R2+2ξ2ω2Ṙ2 + (A2

222 + h2
222)R

3
2 +B2

222R2Ṙ2
2

+ (A2
112 +A2

211 + h2
112)R2R

2
1 +B2

211R2Ṙ1
2
+B2

112R1Ṙ1Ṙ2

+ C2
222R

2
2Ṙ2 + (C2

121 + C2
211)R1R2Ṙ1 + C2

112R
2
1Ṙ2 = 0 (98b)

where the coefficients Ap
ijk, B

p
ijk and Cp

ijk are given by Eq. (53). In case
of low-order internal resonance, the dynamical monoms corresponding to
resonant terms should normally be added into the normal form, Eq. (52),
which were derived for the case of no internal resonance. However, the case
considered here (a perfect shell) does not produce new terms because of the
perfect symmetry of the initial problem. For example, one could have find
a monom like R2

1R2 in the first equation as it is a resonant term. However,
this dynamical term is not present in the original equation because h1

112 = 0,
so it is not present in the normal form.

For comparison, the ROM obtained with the “conservative NNM” for-
mulation is also computed. It can be obtained from Eq. (98) by setting
Cp

ijk = 0, and Ap
ijk, B

p
ijk to their values obtained for ξi = 0, ∀i. Frequency-

response curves are numerically obtained with AUTO for the three following
models: reference solution with 16 degrees-of-freedom, and the two ROMs
corresponding to ”damped” and ”conservative” NNMs. For these simula-
tion, the original modal coordinates are simply recovered by using Eq. (39).

Figure 30 shows the frequency-response curves for the driven mode A1,n

and its companion mode B1,n. The full system simulation with 16 dofs is
presented with a thick line. The dynamical response is composed of two
main branches of solution. The first branch correspond to single-mode mo-
tion where only the driven mode, A1,n, is present in the response (B1,n=0).
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This branch present a softening-type nonlinearity. Due to the presence of
the companion mode in 1:1 internal resonance with the driven mode, the
main branch loses stability at the Bifurcation point (BP), where a sec-
ondary branch of coupled solutions emerge. Along this secondary branch,
the coupling between the two resonant modes is strong and energy is ex-
changed inbetwwen them, resulting in important values for B1,n. Moreover,
this secondary branch encounters an instability with the presence of two
Neimarck-Sacker bifurcation points, denoted as TR (like ”torus” bifurca-
tion) on the figure. Inbetween these two Neimarck-Sacker bifurcations, the
harmonic solutions are not stable anymore, and a quasiperiodic response is
observed.

Let us now observe how the ROMs build with NNMs are able to recover
all the fine details of this bifurcation diagram. The “conservative NNM”
case is plotted with a dash-dotted line. One can see that all the dynamical
features of the original system are recovered: the two branches are found
as well as the nature of the bifurcations and the stability. This result was
awaited since it is a fundamental property of the normal form to recover the
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essential dynamical properties, thus the qualitative behaviour (number and
nature of bifurcations) will always be predicted by the ROM. As already
mentioned in the 2-dof example, a higher value of the maximum ampli-
tude is found, showing that the damping has been underestimated. This is
corrected with the “damped NNM” ROM, which gives a very good result,
although one may argue that the softening effect is a little bit overestimated.
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Figure 31. Maximum amplitude of transverse shell vibration versus exci-
tation frequency for six slave modal coordinates: (a) and (b): driven and
companion of asymmetric (1,2n) mode; (c) and (d): driven and compan-
ion of asymmetric (3,2n) mode; (e) and (f): axisymmetric (1,0) and (3,0)
modes. Thick line: reference solution. Thin line : ROM computed from the
two-dof “damped NNM” master coordinates.

Recovering the original modal coordinates with Eq. (39) shows that,
thanks to the curvature of the invariant manifold in phase space, slight con-
tributions are present onto all others linear modal coordinates. For compar-
ison, the sixth most important modal amplitudes are represented in Fig. 31,
for the full-order model, and the “damped NNM” ROM. This figure shows
that the reduced model with two equations allows to recover all the modal
amplitudes with good accuracy.

This example shows that the method can be easily used for reducing
the non-linear dynamics of geometrically non-linear structures. The main
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advantage relies in the quickness of the method: computing all the coeffi-
cients appearing in Eqs. (39, 53, 52) is immediate on a standard PC for
this 16-dof full-order system. As two approximations are used to produce
the ROM (namely a time-invariant manifold is used, and it is computed by
a third-order asymptotic development), it is awaited that the results can
deteriorate for very large amplitude motions. However, this example shows
that up to two times the thickness of the shell, the ROM is robust.

4.4 Comparison with the Proper Orthogonal Decomposition
method

This last section is devoted to a comparison between reduced-order mod-
eling as proposed with NNM via normal form theory, and the more popular
Proper Orthogonal Decomposition (POD) method. For that purpose, the
case of the circular cylindrical shell, filled with water and harmonically ex-
cited in the vicinity of one of its fundamental frequency (as in the previous
subsection), is selected. A brief presentation of the POD method is first
carried out, then some results are presented in order to illustrate the ad-
vantages and drawbacks of each method.

The POD method optimally extracts the spatial information necessary
to characterize the spatio-temporal complexity and inherent dimension of
a system, from a set of temporal snapshots of the response, gathered from
either numerical simulations or experimental data. This point is important
in the comparison since one needs to have at hand a set of solutions of
the system, in order to build the POD ROM from that set. This can be
seen as an advantage in an experimental context, where the POD method
is routinely used to extract e.g. coherent structures from measurements.
However in a theoretical context, this appears as a drawback, since one is
obliged to run some simulation to have a set of results in order to build the
POD ROM. Moreover, the question of the choice of the dynamical solutions
to compute, from which the ROM is built, is very important, and a great
care must be taken in this choice.

In the present context, the temporal responses are obtained via direct
simulation with the conventional Galerkin solution. The question of the
selected dynamical solutions for these direct solutions is postponed to the
results to better explain the differences one can obtain in choosing e.g. either
a regular or a chaotic solution. The Proper Orthogonal Modes (POMs)
obtained by the POD method are denoted Ψi(r, θ). Once they are obtained,
a Galerkin approach will be used in order to derive oscillator equations for
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the ROM, via:

w(r, θ, t) =

PPOD∑
i=1

ai(t)Ψi(r, θ). (99)

In this expression, ai(t) are the proper orthogonal coordinates and PPOD is
the number of POMs (dof) used to build the POD model. It is awaited to
obtain PPOD significantly smaller than PLNM , the number of linear modes
necessary for the conventional Galerkin method to converge. The question
is here to compare PPOD with PNNM .

Let us now explain briefly the method used to find out the POD modes
Ψi(r, θ). The interested reader is referred to general introduction on the
POD method to have a complete description, see e.g. Berkooz et al. (1993);
Feeny and Kappagantu (1997); Kerschen and Golinval (2002); Kerschen
et al. (2005), here only the main steps are recalled. The displacement field
w(r, θ, t) is first divided into its time-mean value w̄(r, θ) and the zero-mean
response w̃(r, θ, t) = w(r, θ, t) − w̄. In the POD method, the POMs are
obtained by minimizing the objective function defined by:

λ̃ =< (Ψi(r, θ)− w̃(r, θ, t))2 >, ∀(r, θ) ∈ Ω (100)

where Ω denotes the space domain, <> the time-averaging operation and
Ψi(r, θ) the generic POD mode. For minimizing the objective function,
a collection of dynamical states are needed. They are collected from a
direct simulation. For example, having realized a temporal solution of the
complete problem for a given external force, resulting in a given dynamical
behaviour, one is led with a discrete collection of events w̃(r, θ, tn), for n=0
to Nt, the number of time steps of the dynamical simulation. Let us denote
by w̃n the so-called temporal snapshots of the computed solution w̃(r, θ, tn).
Then, the time-averaging operation of a series of Nt snapshots writes:

< w̃(r, θ, t) >=
1

Nt

Nt∑
n=1

w̃n (101)

Minimizing of the objective function (100) is obtained, after some mathe-
matics, by solving the following eigenvalue problem:∫

Ω

< w̃(r, θ, t)w̃(r′, θ′, t) > Ψ(r′, θ′) r′dr′dθ′ = λΨ(r, θ), (102)

where < w̃(r, θ, t)w̃(r′, θ′, t) > is the time-averaged spatial autocorrelation
function.

A Galerkin projection scheme for determining POMs semi-analytically,
and in parallel to approximate the solution of the PDE, is now presented.
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This technique has been developped initially by Sarkar and Päıdoussis (2004)
for beams conveying fluid and extended to circular cylindrical shells by Am-
abili et al. (2003, 2006); Amabili and Touzé (2007). The main idea is to
express the POD modes as linear combination of the eigenmodes and the
structures, hence allowing for:
• A physical interpretation of the POMs
• An analytical expression of the dynamical system governing the dy-
namics of the problem in the POD basis.

The generic POM is projected on the eigenmodes Φi(r, θ) of the shell as:

Ψ(r, θ) =

PLNM∑
i=1

αiΦi(r, θ), (103)

where αi are unknown coefficients. Then, the following eigenvalue problem
is finally obtained:

Aα = λB α, (104)

where

Aij = τiτj < q̃i(t)q̃j(t) >, Bij = τiδij , τi =

∫
Ω

Φ2
i (r, θ)rdrdθ, (105)

δij is the Kronecker symbol, q̃i(t) = qi(t)− q̄i is the zero-mean response of
the ith generalized coordinate, with q̄i being its mean. The norm of the
basis functions τi in the present case is πRL/2 for asymmetric modes and
πRL for axisymmetric modes. In Eq. (104), A and B are symmetric and
positive definite matrices of dimension PLNM × PLNM , and α is a vector
containing the PLNM unknown coefficients of the POMs. The eigenvectors
α corresponding to the largest eigenvalues (known as dominant POMs) in
Eq. (104) can now be inserted in Eq. (103) that gives a basis for the
approximate solution of the PDE using the Galerkin approach; this will be
referred to as the POD-Galerkin scheme hereafter.

Recombination of modal expressions given in Eqs (103), (99) and (97)
allows deriving the accurate expansion of the POD mode onto the basis of
the linear eigenmodes of the shell as:

w(r, θ, t) =

PPOD∑
i=1

ai(t)

PLNM∑
j=1

αjiΦj(r, θ)

=

PPOD∑
i=1

M∑
m=1

N∑
n=0

[αm,n,i cos(nθ) + βm,n,i sin(nθ)] sin(λmr), (106)
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where on the right-hand side two different symbols, αm,n,i and βm,n,i, have
been introduced to differentiate the coefficients of the POMs for cosine and
sine terms in θ and are given by the corresponding αji. Eq. (106) is used
to solve the equations of motion of the shell, given in the beginning of
the previous subsection, Eqs. (94) and (96), with the Galerkin method to
find the equations of motion of the ROM. Moreover, Eq. (106) has still
the same shape over the shell surface as Eq. (97); therefore, the fluid-
structure interaction can be treated with the same approach used for the
Galerkin method. This is not surprising, because the POD modes have been
projected on the eigenmodes.

The coefficients αm,n,i and βm,n,i are also meaningful in order to get
a physical interpretation of the POMs in phase space. Indeed, the POD
method can be seen as a geometrical method that span the phase space
with orthogonal modes, as enforced by the linear eigenvalue problem that
defines the POMs, Eq. (104). These orthogonal modes are defined by the
direction of the phase space where most of the information is present, which
also explains why the choice of the data used for computing the POMs is
crucial. In the POD-Galerkin scheme developed here, the POMs are ex-
pressed in the basis of the linear eigenmodes of the selected structure, so
that the coefficients αm,n,i and βm,n,i can be directly read as the deviation
between the POMs and the linear eigenspaces.

The comparison between the ROMs either based on NNMs, or on POD,
is now addressed. For that purpose, the case of the circular cylindrical
shell filled with water, excited harmonically in the vicinity of its fundamen-
tal mode, is considered. The performances of the ROMs are assessed by
comparing their ability to recover the full bifurcation diagram found in the
previous subsection, Fig. 30. Fig. 32 shows the comparison between the
reference model with 16 linear modes, as already shown, together with the
ROM composed of two NNMs (also shown in the previous section), and
finally the result given by considering three POD modes.

The selection of the temporal response used for building the POD-based
ROM is fully documented in (Amabili et al., 2003), illustrating the difficul-
ties encountered for choosing a proper case allowing to recover the response
shown in Fig. 32. In particular, Fig. 32 shows two points, b and c, that have
been used in the process. For point b, the frequency is ω = 0.995ω1, the
response is on the second branch, which means that the coupling between
the two configurations is activated. However, the point b is selected just
before the Neimarck-Sacker bifurcation, so that the response is harmonic.
On the other hand, point c, for ω = 0.991ω1, is also on the coupled solutions
branch, but in the quasiperiodic regime. If one uses point b for building the
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Figure 32. Maximum amplitude of transverse shell vibration versus exci-
tation frequency. (a): driven mode A1,n. (b): companion mode B1,n. Thick
line: reference solution (unstable states (dashed thick line) and bifurcation
points are indicated: BP : pitchfork, TR: Neimarck-Sacker (torus) bifura-
tion). Blue thin line: ROM obtained by considering two NNMs. Green thick
line: ROM obtained by considering three POMs. Points b and c denotes
the dynamical responses used for building the POD ROM.

POD model, results are not satisfactory at all: the solution branches moves
off the reference solution (Amabili et al., 2003). Secondly, it has then been
found impossible to recover the Neimarck-Sacker bifurcation point in that
case, so that the quasiperiodic regime is not predicted by the POD based
ROM.

For the POD ROM, the best result has been obtained by using point
c, in the quasiperiodic regime. The reason is that the quasiperiodic orbits
shows larger variations in phase space. Hence the available information
for building the ROM is more important. For reproducing the complete
bifurcation diagram, the best solution has been obtained by retaining three
POMs, it is shown as a green line in Fig. 32. One can observe that the
complete bifurcation diagram has been fairly recovered, with all bifurcation
points and special regimes found.

Comparing now the NNM and the POD-based ROMS, one can observe
that both are able to recover the bifurcation diagram. However, three POMs
are necessary, versus only two NNMs. Retaining only the first two POMs
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ith POM α1,5,i β1,5,i α1,10,i β1,10,i α1,0,i α3,0,i

1 1 0 0.000213 0 0.000043 8.8e-6

2 0 1 0 -0.00029 0 0
3 0.000123 0 -0.1847 0 -0.9641 0.1855

Table 1. Coefficients αm,n,i and βm,n,i defined in Eq. (106), for the first
three POD modes obtained with point c.

gives incorrect results: in that case, the first bifurcation point allowing to
go from the uncoupled, first branch of solution; to the coupled, secondary
branch, is not detected, so that 1:1 resonant motions are not predicted !
On the other hand, the NNM-based ROM gives very satisfactorily results
with only two modes, and with direct application from the PDE of motions,
without having to work out with a difficult selection of a correct database
to construct the ROM.

A geometrical interpretation, in the phase space, allows to understand
why three POMs are necessary to reconstruct the correct solution, whereas
only two NNMs are enough. The coefficients αm,n,i and βm,n,i for the first
three POMs, obtained by using point c (quasiperiodic state) for creating the
snapshots database, are given in Table 1. One can see that α1,5,1=1, which
means that the first POD mode is very near the first linear eigenspace, with
a very slight deviation given by the small, but non-zero, values of α1,10,1 and
α1,0,1. The second line shows that the second POD mode is very near the
second linear eigenspace, with a very slight correction along B1,10. Finally
the third line shows that the third POM is essentially colinear to the first
axisymmetric mode (1,0), with some slight corrections.

Figure 33 shows a cut-off (Poincaré section) in the phase space of the
complete problem, which is of dimension 33 (16 linear modes with displace-
ment and velocity, plus the forcing term). The plane selected for the section
is A(1,5), A(1,0): driven mode and first axisymmetric mode. The clouds of
points are obtained from the direct simulation obtained with the full model,
at points b (harmonic coupled solution) and c (coupled quasiperiodic mo-
tion). As awaited, the quasiperiodic motion occupies a larger volume in
phase space. The most important appears in the non-negligible motions
along the axisymmetric mode. The fundamental importance of retaining ax-
isymmetric modes for analyzing nonlinear vibrations of asymmetric modes
of shells has already been underlined in many studies (Amabili et al., 1998,
1999; Amabili and Päıdoussis, 2003). It is the result of a non-resonant,
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Figure 33. Poincaré section in (A(1,5), A(1,0)). Cloud of points: section
of the orbits with the Poincaré plane, cases b and c. POD differs very
little from the original axis, whereas the cut of the 4-dimensional invariant
manifold (curved hyperbolic line) goes right in-between the points (NNMs).

invariant-breaking term between these two modes. Consequently, the re-
sponse of A(1,0), though non-resonant, is not negligible, as ascertained by
Figs. 31(e) and 33. The generating axis of the POD and NNM-based
ROMS are also shown in Fig. 33. As already underlined, the POMs differ
very slightly from the linear modes. On the other hand, the NNM method
allows, thanks to normal form theory, to include the non-resonant coupling
terms into the change of coordinates. The cut of the NNM is shown in
Fig. 33, one can see that it takes naturally into account this non-resonant
coupling term into the geometry of the manifold, so that the subspaces
are very near the points of the reference simulation. This explains why
the POD method need to take into account the third POM: otherwise the
axisymmetric coupling would have been missed, hence resulting in an incor-
rect ROM. On the other hand, The NNM-based ROM is accurate with two
NNMs only, as the bending of the phase space is taken into account in the
nonlinear change of coordinates.

As a conclusion on this section, the examples with shell models have
shown the ability of the NNM-based ROMs to produce accurate models for
predicting the resonant forced response of thin structures with moderately
large vibration amplitudes. The last subsection where comparison with the
POD method has been drawn out, underlined two important features of the
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NNM method:

• the method is directly applicable on the resulting dynamical system,
as a supplementary (nonlinear) change of coordinates. There is no
need to compute, as in the POD method, a reference solution, in
order to be able to build the ROM. This is a great advantage, more
especially as the choice of correct solutions is a tricky problem that
need experience and cannot be realized blindly, see e.g. Amabili et al.
(2003).

• thanks to the invariant (curved) based span of the phase space, the
results obtained are of better agreement, with less NNMs than POMs.
This is the advantage of using a representation basis that have a physi-
cal meaning, and is able to properly catch the non-resonant couplings,
that are important for the geometry, but not for the dynamics. This
underlines again a key idea claiming for using NNMS for reduced-
order modeling. There is an ”apparent” complexity of the dynamics
which is only due to the non-resonant coupling terms, which creates
the curvature of the invariant manifolds. This complexity is said to be
”apparent” since it can be cancelled through a nonlinear change of co-
ordinates. Once this complexity embedded in the geometry, a better
reduction is obtained, and the complexity due to the resonant terms
–that are really key for the dynamical properties of the solutions– can
be more easily studied.

These conclusions need however to be moderated by the two following
points:

• As proposed, the NNM-based ROM relies on two important assump-
tions: a third-order asymptotic method is used, and a time-invariant
manifold is adopted. These assumptions have the great advantage to
produce simple ROMS that are derived quickly without complicated
numerical computations. However, increasing the amplitudes of vi-
bration, the NNM-based ROM can lose its accuracy due to these two
assumptions.

• The NNM method relies on a local theory, whereas the POD method
is global (in the sense of the phase space). Hence the POD method
can be more robust to large variations of the parameters. This is for
example illustrated by Amabili and Touzé (2007).
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M. Amabili and C. Touzé. Reduced-order models for non-linear vibrations of
fluid-filled circular cylindrical shells: comparison of pod and asymptotic
non-linear normal modes methods. Journal of Fluids and Structures, 23
(6):885–903, 2007.

M. Amabili, F. Pellicano, and M. P. Päıdoussis. Non-linear vibrations of
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L. Jézéquel and C. H. Lamarque. Analysis of non-linear dynamical systems
by the normal form theory. Journal of Sound and Vibration, 149(3):
429–459, 1991.

D. Jiang. Nonlinear modal analysis based on invariant manifolds. Appli-
cation to rotating blade systems. PhD thesis, University of Michigan,
2004.

D. Jiang, C. Pierre, and S. Shaw. Nonlinear normal modes for vibratory
systems under harmonic excitation. Journal of Sound and Vibration, 288
(4-5):791–812, 2005.

Th.von Kármán. Festigkeitsprobleme im maschinenbau. Encyklopdie der
Mathematischen Wissenschaften, 4(4):311–385, 1910.

G. Kerschen and J.C. Golinval. Physical interpretation of the proper orthog-
onal modes using the singular value decomposition. Journal of Sound
and Vibration, 249(5):849–865, 2002.

G. Kerschen, J.C. Golinval, A.F. Vakakis, and L.A. Bergman. The method
of proper orthogonal decomposition for dynamical characterization and
order reduction of mechanical systems: an overview. Nonlinear Dynam-
ics, 41:147–169, 2005.



www.manaraa.com

Normal Form Theory and Nonlinear Normal Modes 151
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A. Sarkar and M. P. Päıdoussis. A cantilever conveying fluid: coherent
modes versus beam modes. International Journal of Non-Linear Me-
chanics, 39:467481, 2004.

M. Sathyamoorthy. Vibrations of moderatly thick shallow spherical shells
at large amplitude. Journal of Sound and Vibration, 172(1):63–70, 1994.

S. W. Shaw and C. Pierre. Non-linear normal modes and invariant mani-
folds. Journal of Sound and Vibration, 150(1):170–173, 1991.

S. W. Shaw and C. Pierre. Normal modes for non-linear vibratory systems.
Journal of Sound and Vibration, 164(1):85–124, 1993.



www.manaraa.com

152 C. Touzé

S. Sridhar, D. T. Mook, and A. H. Nayfeh. Non-linear resonances in the
forced responses of plates, part I: symmetric responses of circular plates.
Journal of Sound and Vibration, 41(3):359–373, 1975.

O. Thomas and S. Bilbao. Geometrically nonlinear flexural vibrations of
plates: In-plane boundary conditions and some symmetry properties.
Journal of Sound and Vibration, 315(3):569–590, 2008.
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A Expressions of the coefficients for the normal
transform in the conservative case

Expressions of the coefficients (apij , bpij , rpijk, up
ijk, γp

ij , μp
ijk, νpijk) used

in Eqs. (39), which allows one to go from the modal variables (associated
with the orthogonal linear grid) to the normal coordinates (associated to
the invariant manifold and the curved grid) are given here.

A.1 Quadratic coefficients

• The following expressions are obtained, ∀p = 1, ..., N :

∀ i = 1, ..., N , ∀ j ≥ i, ..., N :

apij =
ω2
i + ω2

j − ω2
p

Dijp
gpij (107a)

bpij =
2

Dijp
gpij (107b)

cpij = 0 (107c)

αp
ij = 0 (107d)

βp
ij = 0 (107e)

γp
ii =

2

4ω2
i − ω2

p

gpii (107f)

∀ i = 1, ..., N , ∀ j > i, ..., N :

γp
ij =

ω2
j − ω2

i − ω2
p

Dijp
gpij (107g)

γp
ji =

ω2
i − ω2

j − ω2
p

Dijp
gpij (107h)

where Dijp = (ωi + ωj − ωp)(ωi + ωj + ωp)(−ωj + ωi + ωp)(ωi − ωj − ωp).

A.2 Cubic coefficients

• The following coefficients, which correspond to the trivially resonant
terms, are equal to zero:
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∀p = 1, ..., N : up
ppp = rpppp = μp

ppp = νpppp = 0

∀ j > p...N : rppjj = up
pjj = up

jpj = 0

μp
pjj = νppjj = νpjpj = 0 (108a)

∀ i < p : rpiip = up
iip = up

pii = 0

μp
iip = νpiip = νppii = 0

• The non-zero coefficients are now given, ∀p = 1, ..., N :
∀ i = 1, ..., N, i �= p :

rpiii = 1

D
(1)
ip

[
(7ω2

i − ω2
p)(h

p
iii +Ap

iii) + 2ω4
iB

p
iii

]
up
iii = 1

D
(1)
ip

[
6hp

iii + 6Ap
iii + (3ω2

i − ω2
p)B

p
iii

]
μp
iii = up

iii

νpiii = 1

D
(1)
ip

[
(9ω2

i − 3ω2
p)(h

p
iii +Ap

iii) + 2ω2
pω

2
iB

p
iii

]

where D
(1)
ip = (ω2

p − ω2
i )(ω

2
p − 9ω2

i ).
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∀ i = 1, ..., N − 1, i �= p, ∀j > i, ..., N :

rpijj =
ω2
i (ω

2
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where D
(1)
ijp = (ωp+ωi−2ωj)(ωp+ωi+2ωj)(−ωp+ωi+2ωj)(−ωp+ωi−2ωj).
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∀ i = 1, ..., N − 1, ∀j > i, ..., N, j �= p :
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∀ i = 1, ..., N − 2, ∀j > i, ..., N − 1, ∀k > j, ..., N :
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where D
(3)
ijkp = (ωk + ωi − ωp − ωj)(ωk + ωi − ωp + ωj)(−ωk + ωi + ωp +

ωj)(−ωk +ωi +ωp−ωj)(ωk +ωi +ωp−ωj)(ωk +ωi +ωp +ωj)(−ωk +ωi−
ωp + ωj)(−ωk + ωi − ωp − ωj).
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Nonlinear normal modes in damped - forced
systems

O.V.Gendelman

Faculty of Mechanical Engineering, Technion - Israel Institute of Technology,

Haifa, Israel

Abstract In the previous chapters of this volume, the nonlinear

normal modes (NNMs) were defined and explored in conservative

systems. In current chapter, the notion is extended for dynamical

systems with viscous damping, as well as for the systems with ex-

ternal forcing. We start with a discussion about normal modes in

linear damped systems. Then, we discuss an effect of the damping

on the NNMs in nonlinear models. Finally, it is demonstrated that

the problem of targeted energy transfer (TET) may be efficiently

treated with the help of the NNM concept with account of possible

time scale separation – both in autonomous and in forced systems.

1 Introduction

This volume is devoted to the nonlinear modal analysis. In a conservative
case, despite lack of the superposition, one can conveniently define the non-
linear normal modes (NNMs) and efficiently use them for certain problems
of the nonlinear analysis. Different approaches and notions were developed;
some of these ideas and related results are reviewed in this volume in Chap-
ters 1 and 2. Needless to say, the NNMs are only particular solutions and
cannot completely represent the dynamics even in simple low-dimensional
benchmark models. Still, some important dynamical responses may be re-
vealed this way. Besides, one should mention that quite often the NNMs
are the only analytic or semi-analytic solutions available for even moder-
ately nonlinear system – all the rest of dynamics may be obtained only by
numeric brutal force.

However, if the system has damping (even linear damping, to say nothing
of the nonlinear one), then the things become much more complicated. One
can perceive the NNMs as analytic extensions of the linear normal modes –
of course, if such extension is possible in specific system. In linear damped
system, however, the traditional normal modes generically cease to exist,
as it is demonstrated below in Section 1. So, if one sees the NNMs as

G. Kerschen (Ed.), Modal Analysis of Nonlinear Mechanical Systems, CISM International 
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analytic continuation of something in the linear case, the damping poses a
problem - there is nothing to continue analytically! In the same time, as we
mention below in Section 1, there is a way to construct certain form of the
modal description for the linear damped system. These modes are complex
and form 2N-dimensional modal space for the system with N degrees of
freedom. It might be that these ”modes” can serve as a basis for the theory
of analytic continuation in the damped case. Thus, one might be able to
define the damped NNMs rigorously. To the best of the author’s knowledge,
such theory does not exist today.

There exists another major complication related to the definition of the
NNMs in the damped case. The NNMs are known to undergo numerous and
sometimes complicated bifurcations [(1)]. In Section 2 it is demonstrated
that under the damped dynamics the passage through the bifurcation gener-
ically destroys the NNM - even as it is stable in the conservative case. So,
common definitions of the NNM stability [(1), (2)] are hardly applicable for
the damped case; alternative approaches do not seem to exist - again, to
the best of the author’s knowledge.

Given all this information, very reasonable question arises – why one
should bother himself with the problem of the NNMs in damped systems?
The answer is presented in Sections 3 and 4. It terns out that in cer-
tain dynamical systems with damping the ”damped” NNM can be defined
asymptotically as an attractor of dynamic flow at certain time scale. This
definition can be put to good use, for instance, for the problem of tar-
geted energy transfer (TET)[(3), (4)]. Section 3 is devoted to the damped
TET, Section 4 - to the TET and analysis of attractors in certain classes of
forced-damped nonlinear systems.

2 Linear modal analysis of damped systems

It is well-known that generic discrete oscillatory system with viscous damp-
ing can be described by the following matrix equation:

Mẍ+ Cẋ+Kx = Q(t) (1)

Here M is the mass matrix, C- the damping matrix and K – the stiffness
matrix. Vector Q(t) represents external forces acting on the oscillatory
system. All these matrices are considered symmetric.

Let us first consider the case without damping, C=0. In this case, as it
is well – known [(5)], one can diagonalize both M and K with the help of
the same modal transformation:

UTMU = I, UTKU = D = diag(ω2
1 , ..., ω

2
n)

Ux = ξ, UTQ = F
(2)
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Thus, equation (1) with C=0 is decomposed into a set of N independent
modal equations, which represent independent forced linear oscillators:

ξ̈k + ω2
kξk = Fk(t), k = 1..n (3)

After trivial solution of these equations, one can easily compute the solution
in terms of the initial variables by means of the inverse modal transforma-
tion:

x = UT ξ (4)

It should be mentioned that the normalization of the modal matrix is
uniquely defined by the fact that it makes the mass matrix unit.

If the damping is nonzero, the outlined approach is not applicable straight-
forwardly, since generically it is not possible to diagonalize three matrices
simultaneously by means of the same modal matrix. Still, one can outline
a particular case when the modal description is still possible – the case of
proportional damping [(5)]. In this particular case, the damping matrix is
proportional to a sum of the mass and the stiffness matrices with some real
coefficients:

C = αM + βK, α, β ∈ R (5)

Then, the modal transformation brings the initial system to the following
form:

ξ̈ + αξ̇ +D(βξ̇ + ξ) = F (t) (6)

One can see that the modal decomposition succeeds in this case and one
obtains a set of N independent forced-damped linear oscillators:

ξ̈k + 2ζkωk ξ̇k + ω2
kξk = Fk(t), k = 1..n, ζk =

α+ βω2
k

2ωk
(7)

Here ζk is the modal damping coefficient of each mode. It depends on
the modal frequency; therefore, In the same system some modes can be
underdamed, and the others – overdamped or critically damped.

Generally speaking, one cannot expect that in some particular system the
damping matrix will be exactly the linear combination of the stiffness and
the damping matrices. Nevertheless, the case of the proportional damping
well may have a practical interest – for instance, if the system is highly
symmetric.

For example, let us consider a system of two coupled linear oscillators
presented in Fig. 1.

Let us consider the symmetric case with the following values of param-
eters:

m1 = m2 = 1, c11 = c22 = c0,
λ11 = λ22 = λ0

(8)
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Figure 1. Sketch of the model system

In this case, the system easily can be reduced to the independent modal
equations in terms of in-phase and out-of-phase modes:

ẍ1 + λ0ẋ1 + c0x1 + c12(x1 − x2) + λ12(ẋ1 − ẋ2) = 0
ẍ2 + λ0ẋ2 + c0x2 + c12(x2 − x1) + λ12(ẋ2 − ẋ1) = 0
V = x1 + x2,W = x1 − x2

V̈ + λ0V̇ + c0V = 0

Ẅ + (λ0 + 2λ12)Ẇ + (c0 + 2c12)W = 0

(9)

Here xi, i =1,2 are displacements of the individual oscillators, and V and
W are displacements of the in-phase and out-of-phase modes respectively.
In the case of the proportional damping, the modal matrix is the same as
in the undamped case – the modal shapes do not change. The damping
ratios of two modes can be very different:

ζV =
λ0

2
√
c0

, ζW =
λ0 + 2λ12

2
√
c0 + 2c12

(10)

Let us adopt the following numeric values of parameters;

λ0 = 0.1, c0 = 1, λ12 = 1.5, c12 = 0.1 ⇒ ζV = 0.05, ζW = 1.41
ẋ1(0) = 1, x1(0) = 0, x2(0) = 0, ẋ2(0) = 0

(11)

Time series for the oscillator displacements are presented in Fig. 2.
One can see that after some brief initial transient both oscillators have

almost the same displacements – in other terms, only the in-phase mode is
observed. Needless to say, it is related to the fact that for given example
the out-of-phase mode has much higher modal damping coefficient. In fact,
the out-of-phase mode is overdamped in this case.

For generic symmetric damping matrix, UTCU is not diagonal; therefore
standard modal analysis is not applicable. Still, the equations of motion can
be diagonalized in the state space [(5)]. The state vector is defined as:

y = (xT ẋT )T (12)
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Figure 2. Time series - the case of proportional damping

The equations of motion can be reshaped as:

ẍ = −M−1Cẋ−M−1Kx+M−1Q (13)

In terms of the state space introduced above, the equations of motion can
be presented as:

ẏ = Ay +BQ,A =

(
0 I

−M−1K −M−1C

)
, B=

(
0

M−1

)
(14)

Let us consider the unforced system: Q=0. In this case the solution is
governed by eigenvalues and eigenvectors of A. The eigenvalues may be
complex and appear in conjugate pairs. The eigenvectors are, generically,
not orthogonal, but biorthogonal :

Aq = λkq, k = 1, ..2n
qk − system of eigenvectors
pTA = λkp
pk − system of ”left” eigenvectors
pTj Aqk = λjp

T
j qk = λkp

T
j qk ⇒ pTj qk = δjk

(15)
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“Modal” decomposition in the systems with non-proportional damping is
performed with respect to the system of “right” eigenvectors and with the
help of the system of “left” eigenvectors:

y =
2n∑
k=1

akqk ⇒ ak = pTk y

λkak = pTkAy
(16)

Thus, in order to accomplish the modal decomposition, the eigenvectors
problem should be solved twice – for instance, for A and AT .

To illustrate the procedure, we’ll perform it for arguably the simplest
possible example – linear conservative oscillator. Its equation of motion,
state space and representation un terms of “complex modes” are presented
below:

ẍ+ ω2x = 0; x(0)=x0, ẋ(0) = x1, y =

(
x
ẋ

)
; y(0) = y0 =

(
x0

x1

)

A=

(
0 1

−ω2 0

)

λ1 = iω, q1 = 1√
1+ω2

(
1
iω

)
; p1 = 1√

1+ω2

(
iω
1

)

λ2 = −iω, q2 = 1√
1+ω2

(
1

−iω

)
; p2 = 1√

1+ω2

( −iω
1

)
(17)

The solution of arbitrary initial value problem in terms of the state variables
is written as follows:

y(t) = pT1 y0 exp(iωt)q1 + pT2 y0 exp(iωt)q2 (18)

To grasp the physical sense of this solution, let us multiply both sides by
transposed “left” eigenvectors. After easy manipulations, we get:

ψ(t) = ẋ+ iωx = (x1 + iωx0) exp(iωt) = ψ(0) exp(iωt)
ψ∗(t) = ẋ− iωx = (x1 − iωx0) exp(−iωt) = ψ∗(0) exp(−iωt)

(19)

Thus, we have obtained interesting simplification of the simplest possible lin-
ear oscillator – complexification. Physically, it corresponds to consideration
of rotations instead of oscillations. This idea is, of course, not so necessary
for the linear oscillator, but allows nice simplifications for the problems re-
lated to quasilinear and even strongly nonlinear oscillations. Some details
on use of this procedure will be given in the following Sections.

Let us reconsider the 2DOF damped system depicted in Fig. 1 - this time
with non-proportional damping. The set of parameters in current example
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is selected as:
m1 = m2 = 1, c11 = c22 = c0,
λ22 = λ0 = 0, λ11 �= 0

(20)

The matrix in the state space looks like

A =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−(c0 + c12) c12 −λ11 0
c12 −(c0 + c12) 0 0

⎞
⎟⎟⎠ (21)

It is not easy to write down the explicit expressions for eigenvalues and
eigenvectors. To assess this problem, we consider the following numeric
example:

c0 = 1, λ11 = 1.5, c12 = 0.1 (22)

The eigenvalues and eigenvectors are expressed as:

λ1,2 = − 0.747± 0.73i, q1,2 =

⎛
⎜⎜⎝

0.49± 0.48i
0.0012± 0.044i
−0.721± 0i

−0.033∓ 0.032i

⎞
⎟⎟⎠

λ3,4 = − 0.003± 1.05i, q3,4 =

⎛
⎜⎜⎝

0.0439∓ 0.00026i
0.002± 0.689i

0.000135± 0.046i
−0.722± 0i

⎞
⎟⎟⎠

(23)

With the help of these data, it is easy to write down the closed – form
solution; it will not be very instructive. So, one can see that even in a
system of linear damped oscillators it is possible to perform the “modal”
decomposition. However, generically these “modes” do not allow deeper
insight into the system dynamics, and, so, they are used relatively rarely.
However, the idea of ”complexification” can be put to good use in the
nonlinear analysis. Typical example of this sort will be presented in the
next Section.

3 NNMs and their bifurcations in damped nonlinear

systems.

Let us consider a paradigmatic system which exhibits bifurcation of the
NNMs – two Duffing oscillators with linear coupling:

ẍ1 + ελẋ1 + x1 +
4
3εx

3
1 + εα(x1 − x2) = 0

ẍ2 + ελẋ2 + x2 +
4
3εx

3
2 + εα(x2 − x1) = 0

(24)
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Without damping, the antisymmetric mode in the system can lose stability,
giving rise to two localized stable NNMs. It is clearly seen at the Poincare
section in Fig.3.

Figure 3. Poincare section for Hamiltonian system (24)

However, here we are interested in the response with nonzero damping.
Note that the damping, the nonlinearity and the coupling between the os-
cillators are adopted to be small. If the initial conditions are set at the
localized NNM, we obtain the time series presented in Fig. 4.

It is clear that the dynamics does not converge to the antisymmetic
mode after passing the bifurcation point. Instead, we observe a kind of
modulated antisymmetric response. To explain this behavior, we’ll use the
“complexification” technique [(6)].

In this technique, both dependent variables are changed by their “com-
plex” counterparts and then multiple scales expansion is applied:

ẋk + iωxk = ϕk exp(iωt), k = 1, 2
τj = εjt, j = 0, 1, ...; d

dt =
∂

∂τ0
+ ε ∂

∂τ1
+ ...

ϕk = ϕk0 + εϕk1 + ...

(25)

By regular procedure, the conditions for absence of the secular terms are
written as:

ϕ′10 +
λ
2ϕ10 − i

2 |ϕ10|2 ϕ10 − iα
2 (ϕ10 − ϕ20) = 0

ϕ′20 +
λ
2ϕ20 − i

2 |ϕ20|2 ϕ20 − iα
2 (ϕ20 − ϕ10) = 0

′ ∂
∂τ1

(26)
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Figure 4. Destruction of the NNM and start of oscillatory response

By additional change of variables, amplitudes and phases of the new depen-
dent variables are figured out:

ϕ10 = N cos θ exp(iδ1), ϕ20 = N sin θ exp(iδ2), δ=δ1-δ2
N ′ = −λ

2N ⇒ N = N0 exp(−λτ1/2)
θ′ = α

2 sin δ
δ′ = 1

2 cos 2θ
(
N2 + 2α cos δ

sin 2θ

) (27)

In this system, variable N is related to an ”occupation number” in the
system (energy-like quantity), θ describes the localization of energy of one
of the oscillators (θ =0, π/2 correspond to a complete localization on one of
the oscillators, θ = π/4 is the delocalized state), δ describes the phase shift.

In the conservative case (λ =0) one obtains:

N = N0 = const
θ′ = α

2 sin δ, δ′ = 1
2 cos 2θ

(
N2

0 + 2α cos δ
sin 2θ

) (28)

Pure modes correspond to stationary points of (28). They can be summa-
rized as follows:

δ = 0, cos 2θ = 0 ⇒ θ = ±π
4 − symmetric/antisymmetric modes

δ = 0, θ = − 1
2 arcsin(

2α
N2

0

) - localized mode; N2
0 ≥ 2α (29)



www.manaraa.com

170 O. V. Gendelman

Now let us turn to the non-conservative case. The passage through the bifur-
cation corresponds to the passage of the value N through critical value

√
2α

, as follows from (27-29). The following form of System (27) should be
considered:

θ′ = α
2 sin δ

δ′ = 1
2 cos 2θ

(
N2

0 exp(−λτ1) +
2α cos δ
sin 2θ

) (30)

It is easy to see that both the symmetric and the antisymmetric mode are
preserved in the damped dynamics. As for the localized mode, one should
look at the vicinity of the bifurcation. To be more specific, the bifurcation
occurs at time instance τ∗, defined as:

τ∗ = − 1

λ
ln

2α

N2
0

(31)

In the vicinity of this point the system of slow – flow equations can be
simplified by the following expansion:

τ1 = τ∗ + η, θ=-
π

4
+ β(η), |β| � 1, |δ| � 1 (32)

Then, the slow-flow equations in the vicinity of the bifurcation point are
reduced to the following Airy equation [(7)]:

βηη + 2α2ληβ = 0 (33)

Typical solution for current signs selection is presented in Fig. 5.
One can see that arbitrarily small perturbation “above” the bifurcation

point brings about the oscillatory behavior after the passage through the
bifurcation – exactly as observed in Fig. 4. So, one can conclude that
for weakly nonlinear system, the damping can preserve the NNMs with
special symmetry; however, the modes can be destroyed in the vicinity of
the bifurcation points.

4 Time scale separation and a problem of targeted

energy transfer.

As a preliminary illustrative example of the TET [(3)], we consider a two
degree-of-freedom (DOF) dissipative unforced system described by the fol-
lowing equations:

ÿ1 + λ1ẏ1 + y1 + λ2(ẏ1 − ẏ2) + k(y1 − y2)
3 = 0

εÿ2 + λ2(ẏ2 − ẏ1) + k(y2 − y1)
3 = 0

(34)
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Figure 5. Typical solution for Airy equation

Physically, these equations describe a damped linear oscillator (LO) with
mass and natural frequency normalized to unity, and viscous damping coef-
ficient λ1; and an essentially nonlinear attachment with normalized mass ε,
normalized nonlinear stiffness coefficient k, and viscous damping coefficient
λ2. Note that system (34) cannot be regarded as a small perturbation of
a linear system due to the strongly nonlinear coupling terms. We simulate
numerically system (34) for parameter values ε = 0.1, k = 0.1, λ1 = 0.01
and λ2 = 0.01. The selected initial conditions correspond to an impulse
F = Aδ(t) imposed to the linear oscillator [where δ(t) is Dirac’s delta func-
tion – this impulsive forcing is equivalent to imposing the initial velocity
ẏ1(0+) = A] with the system being initially at rest, i.e., y1(0) = y2(0) =
ẏ2(0) = 0 and ẏ1(0+) = A. Hence, the initial energy is stored only in the
LO. The instantaneous transfer of energy from the LO to the nonlinear at-
tachment can be monitored by computing the nondimensional energy ratio
κ, which denotes the portion of instantaneous total energy stored in the
nonlinear attachment,

κ =
E2

E1 + E2
, E1 =

1

2

(
y21 + ẏ21

)
, E2 =

ε

2
ẏ22 +

k

4
(y1 − y2)

4
(35)
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where E1 and E2are instantaneous energies of the LO and the attachment,
respectively. Of course, all quantities in relations (35) are time – dependent.

Figure 6. Evolution of the energy ratio κ for impulse strength A = 0.5.

In Figures 6 and 7 we depict the evolution of the energy ratio κ for
impulse strengths A = 0.5 and A = 0.7, respectively. From Figure 4.6 it is
clear that only a small amount of energy (of the order of 7%) is transferred
from the LO to the nonlinear attachment. However, for a slightly higher
impulse the energy transferred climbs to almost 95% (cf. Figure 7), and
within a rather short time (t ∼15, much less than characteristic time of
viscous energy dissipation in the LO) almost the entire impulsive energy
is passively transferred from the LO to the nonlinear attachment, which
acts as nonlinear energy sink. It should be mentioned that the mass of the
attachment in this particular example is just 10% of the mass of the LO.

The perturbation approach for analysis of the averaged dynamics is
based on an assumption of strong mass asymmetry between the LO and
the NES, as described by the small parameter ε in (34); this means that
we will focus on linear oscillators with lightweight NESs. This approach
does not necessarily assume small damping, and instead relies on per-
turbation analysis considering the NES mass ε as the small parameter.
This approach is considered in this Section, for a system with parameters,
λ1 = 0, λ2 = ελ, k = 4ε/3. The latter convention does not affect the gen-
erality of the analysis, since it may be satisfied by appropriate rescalings of
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Figure 7. Evolution of the energy ratio κ for impulse strength A = 0.7.

the dependent and independent variables of the system.
We start our analysis of fundamental TET by considering the system

of averaged (complex modulation) equations. Introducing the following
changes of complex variables:

ϕje
it = ẏj + iyj , j = 1, 2

χ1 = ϕ1+εϕ2

1+ε , χ2 = ϕ1 − ϕ2
(36)

the modulation equations take the form:

χ̇1 +
iε

2(1+ε) (χ1 − χ2) = 0

χ̇2 +
i

2(1+ε) (χ2 − χ1) +
λ(1+ε)

2 χ2 − i(1+ε)
2 |χ2|2 χ2 = 0

(37)

We recall that the slow flow system (37), was derived under the assumption
of 1:1 resonance between the LO and the NES, and so this model is valid
only in the neighborhood of the 1:1 resonance manifold of the underlying
hamiltonian system. As in (37) the complex coordinates χ1 and χ2 describe
the oscillations of the center of mass of, and the relative displacement be-
tween the LO and the NES, respectively. By successive differentiation and
simple algebra, the above averaged system may be reduced to the following
single modulation equation governing the slow flow of 1:1 resonance capture
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in the damped dynamics:

d2χ2

dt2
+

d

dt

[
i

2
χ2 +

λ(1 + ε)

2
χ2 − i(1 + ε)

2
|χ2|2 χ2

]
+
iε

4

(
λχ2 − i |χ2|2 χ2

)
= 0

(38)
This equation is integrable for λ = 0, but here we are interested in the
damped case λ > 0. More precisely, we assume that λ >> ε, so we treat λ
as an O(1) quantity.

As above, Equation (38) may be analyzed by the multiple scales approach
[(8)]. To this end, we introduce the new time scales, τi = εit, i = 0, 1, ...,
which are treated as distinct independent variables in the following analysis.
Expressing the time derivatives in (38) as,

d

dt
=

∂

∂τ0
+ ε

∂

∂τ1
+O

(
ε2

)
,

d2

dt2
=

∂2

∂τ20
+ 2ε

∂2

∂τ0∂τ1
+O

(
ε2

)
(39)

substituting (39) into (38), and retaining only O(1) terms we derive the
following first-order modulation equation,

∂2χ2

∂τ20
+

∂

∂τ0

[
i

2
χ2 +

λ

2
χ2 − i

2
|χ2|2 χ2

]
= 0 (40)

which possesses the following exact first integral of motion:

∂χ2

∂τ0
+

[
i

2
χ2 +

λ

2
χ2 − i

2
|χ2|2 χ2

]
= M(τ1, τ2, ...) (41)

In expressing the constant of integration M as function of the slow-scales
τ1, τ2, ..., we recognize that the first integral of motion (41) refers only to
the first-order dynamics, i.e., it is only constant at O(1); mathematically
the slow variation of the first integral (41) is justified by the fact that the
multiple scales of the problem are distinct and independent from each other.
Hence, by (41) we allow slow variation of the dynamics, but at higher or-
der (slower) time scales. By the same reasoning, the equilibrium points,
Φ(τ1, τ2, ...)of the first-order system (41) may depend on the higher order
slow time scales τ1, τ2, .... These equilibrium points of the slow flow are
computed by solving the following algebraic equation:

i

2
Φ +

λ

2
Φ− i

2
|Φ|2 Φ = M(τ1, τ2, ...) (42)

Clearly, if an equilibrium is stable it holds that

Φ(τ1, τ2, ...) = lim
τ0→+∞χ2(τ0, τ1, τ2, ...) < ∞ (43)
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whereas, it holds that

Φ(τ1, τ2, ...) = lim
τ0→−∞

χ2(τ0, τ1, τ2, ...) < ∞ (44)

if that equilibrium is unstable. One can show that the first-order dynam-
ical system (40) does not possess any limit sets besides equilibrium points
(for instance by applying Bendixon’s criterion [(9)]).

Since we will carry the analysis only up to O(ε), we omit from here on
slow time scales of order higher than one and express the solution of (42)
in the following polar form,

Φ(τ1) = N(τ1) exp(iγ(τ1)) (45)

Upon substituting into (42) and separating real and imaginary terms, we
reduce the computation of the equilibrium points of the slow flow to the
following equation,

λ2Z(τ1) + Z(τ1) [1− Z(τ1)]
2
= 4 |M(τ1)|2 (46)

where Z(τ1) ≡ N2(τ1). The number of solutions of equation (46) depends on
|M(τ1)| and λ. The function on the left-hand side can be either monotonous,
or can have a maximum and a minimum. In the former case the change of
|M(τ1)| has no effect on the number of solutions and equation (46) provides
a single positive solution. In the latter case, however, the change of |M(τ1)|
brings about a pair of saddle – node bifurcations, and hence multiple solu-
tions.

In order to distinguish between the different cases, we check the roots of
the derivative with respect to Z(τ1) of the left–hand side of (46):

1 + λ2 − 4Z + 3Z2 = 0 ⇒ Z1,2 =
[
2±

√
1− 3λ2

]
/3 (47)

It follows that for λ < 1/
√
3 there exist two additional real roots and pair

of saddle – node bifurcations, whereas at the critical damping value λ =
1/
√
3 the two saddle – node bifurcation points coalesce forming the typical

structure of a cusp. Extending these results to equation (46), if a single
equilibrium exists, this equilibrium is stable with respect to the time scale
τ0. If three equilibrium points exist, two of them are stable focuses or
nodes, and the other is an unstable saddle with respect to the time scale τ0.
Therefore, the O(1) dynamics is attracted always to a stable branch.

The characteristic rate of attraction of the dynamics near a node may
be evaluated by linearizing equation (41), and considering the following
perturbation of the dynamics near an equilibrium point:

χ2 (τ0, τ1) = Φ(τ1) + δ(τ0), |δ| << |Φ| (48)
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Upon substitution of (48) into (41) yields the following linearized equation,

∂δ

∂τ0
+

[
i

2
δ +

λ

2
δ − i |Φ|2 δ − i

2
Φ2δ∗

]
= 0 (49)

where asterisk denotes complex conjugate. Rewriting equation (49) as,(
∂

∂τ0
+

i

2
+

λ

2
− i |Φ|2

)
δ =

i

2
Φ2δ∗ (50)

taking its complex conjugate and combining the two equations, we derive an
expression that explicitly computes the evolution of the perturbation δ(τ0)
(note that Φ depends only on τ1 and not on the time scale τ0),[
∂2

∂τ20
+ λ

∂

∂τ0
+

1

4
(1 + λ2 − 4Z + 3Z2)

]
δ = 0 ⇒ δ = δ0 exp [(−λ± iω) t/2]

(51)
where, ω =

√
3Z2 − 4Z + 1. Solution (51) reveals that the linearized dy-

namics in the vicinity of the equilibrium points depends on λ and Z.
The following possible alternatives are now described. For relatively

large values of damping above the critical value, λ > 1/
√
3, there exists

a single stable node in the O(1) dynamics. For Z > 1 or Z < 1/3 the
attraction of the dynamics to that node is through oscillations [i.e., ω is
real – underdamped cases], whereas for 1 > Z > 1/3 the attraction is
through a decaying motion (i.e., ω is imaginary – the overdamped case).

For relatively small damping values, λ < 1/
√
3, the situation is more

complex, since there exist two additional real equilibrium points given by
(47). For Z > 1 or Z < 1/3 the attraction of the dynamics to the stable
node is oscillatory (underdamped cases), whereas, for 1 > Z > Z1 or Z2 >
Z > 1/3 the attraction is through a decaying motion (overdamped cases).
For Z1 > Z > Z2 we obtain an unstable equilibrium, and the linearized
model predicts exponential growth in the dynamics.

In summary, as Z slowly decreases due to its dependency on the slow-
time scale τ1, and depending on the damping value λ, the O(1) dynamics
undergoes qualitative changes (bifurcations). In particular, if λ > 1/

√
3 we

anticipate the dynamics to remain always stable, since in that case there
exists a single slowly-varying attracting manifold of the O(1) averaged flow.
However, if λ < 1/

√
3 the dynamics becomes unstable, in which case we

expect that the O(1) averaged flow will make a sudden transition from
one attracting manifold to another for slowly decreasing Z. In order to
study this complicated damped transition, one should investigate the slow
evolution of the equilibrium of the O(1) averaged flow Φ(τ1).
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To this end, we consider the O(ε) terms in the multiple – scale expansion:

2
∂2χ2

∂τ0∂τ1
+

∂

∂τ1

[
i

2
χ2 +

λ

2
χ2 − i

2
|χ2|2 χ2

]
+

+
∂

∂τ0

[
λ

2
χ2 − i

2
|χ2|2 χ2

]
+

i

4

[
λχ2 − j |χ2|2 χ2

]
= 0 (52)

We are interested in the behavior of the solution of the O(ε) aver-
aged flow in the neighborhood of a stable equilibrium point, or equiva-
lently, in the neighborhood of the damped NNM invariant manifold Φ(τ1) =
lim

τ0→+∞χ2(τ0, τ1). Therefore, by taking the limit τ0 → +∞ in equation (52)

we obtain the following equation which describes the evolution of the dy-
namics at the slower time scale τ1:

∂

∂τ1
(
i

2
Φ +

λ

2
Φ− i

2
|Φ|2 Φ) + i

4
(λΦ− i |Φ|2 Φ) = 0 (53)

In deriving this equation we take into account that on the slowly-varying,
stable invariant manifold there is no dependence of the dynamics on τ0,
since Φ(τ1) was defined previously as the equilibrium point of the O(1)
averaged flow (4.39-4.40). Hence, the differential equation (53) describes
the slow evolution of the stable equilibrium points of equation (38) (these
are equilibrium points with respect to the fast time scale τ0, but not with
respect to the slow time scale τ1 and to slow time scales of higher orders,
which, however are omitted from the present analysis). The slowly varying
equilibrium Φ(τ1) provides an O(ε) approximation to the damped NNM
manifold of the dynamics of the system ; this is an invariant manifold of
the damped dynamics and can be regarded as the analytical continuation
for weak damping of the corresponding NNM of the underlying hamiltonian
system [(10),(11)].

Rearranging equation (53) in the form,(
i

2
+

λ

2
− i |Φ|2

)
∂Φ

∂τ1
− iΦ2 ∂Φ

∗

∂τ1
= − i

4

(
λΦ− i |Φ|2 Φ

)
(54)

and adding to it its complex conjugate, we obtain the following explicit
expression for the slowly varying derivative of the equilibrium point of the
O(1) slow flow:

∂Φ

∂τ1
=

−λΦ+ i
(
|Φ|2 Φ− 3 |Φ|4 Φ− λ2Φ

)
2
(
1 + λ2 − 4 |Φ|2 + 3 |Φ|4

) (55)
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Using the polar representation, Φ(τ1) = N(τ1) exp(iθ(τ1)), and separating
real and imaginary parts, equation (55) yields the following set of real dif-
ferential equations governing the slow evolution of the magnitude and phase
of the stable equilibrium points of the O(1) averaged flow (i.e., of the stable
damped NNM manifolds),

∂N
∂τ1

= −λN
2(1+λ2−4Z+3Z2)

∂θ
∂τ1

= (Z−3Z2−λ2)
2(1+λ2−4Z+3Z2)

(56)

where Z(τ1) ≡ N2(τ1). The first of equations (56) can be integrated exactly
by quadratures to yield,

(1 + λ2) lnZ(τ1)− 4Z(τ1) + (3/2)Z2(τ1) = K − λτ1 (57)

where K is a constant of integration [it actually depends on the higher
order time scales τ2, τ3, ..., but these are not considered here as the analysis
is restricted to O(ε)].

Expression (57) implicitly determines the evolution of Z(τ1) and, conse-
quently, of N(τ1). The slow evolution of the phase γ(τ1) is described by
the second of equations (56), and may be computed by direct integration
once Z(τ1) is known; due to the implicit form of (57), however, this task
cannot be performed analytically and requires a numerical solution.

Essential information concerning the qualitative behavior of the solu-
tion may be extracted from relation (56) even without explicitly solving
it. Indeed, for sufficiently strong damping, λ > 1/

√
3, the denominator

on the right-hand-side terms is always positive, and the first equation de-
scribes a monotonous decrease of Z(τ1) towards zero with increasing τ1. In
other words, we conjecture that the slowly varying dynamics remains always
on the in-phase damped NNM manifold. By contrast, for relatively weak
damping, λ < 1/

√
3, the velocity ∂Z/∂τ1 is a negative quantity for Z > Z1,

but becomes divergent as the limit Z → Z1 is approached from above.
We cannot proceed to any statement regarding the sign of the velocity

when the amplitude is in the range Z2 > Z > Z1, as the equilibrium point
is unstable there; therefore, we infer that as Z decreases below the critical
amplitude Z1 the damped dynamics should be attracted to a NNM damped
manifold distinct from the in-phase one. This other manifold is a weakly
nonlinear (linearized) branch of the damped out-of-phase NNM invariant
manifold. Of course, this conclusion is valid only for the averaged system
(37 - 38), which was derived under the condition of 1:1 resonance capture.

The previous analytical findings are illustrated by performing numerical
simulations of the averaged system (37) for parameters ε = 0.05, λ = 0.2,
and initial conditions χ1(0) = 0.7+0i, χ2(0) = 0.7+0i. The time evolution
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of the square of the modulation of the envelope of the NES response, |χ2|2,
is depicted in Figure 8. Clearly, both the magnitude and frequency of the
envelope modulation of the NES response tend to zero as the trajectory
approaches the critical value Z1 =0.979. In the vicinity of this value, the
trajectory jumps to the alternative stable attractor. This point may be
further illustrated using the three-dimensional plot depicted in Figure 9,
where the real and imaginary parts of the complex envelope modulation
of the NES, χ2, are plotted in a parametric plot for increasing time. The
damped trajectory of the envelope modulation of the NES starts from zero,
gets attracted initially by the stable damped in-phase NNMmanifold, before
making a transition (jump) to the weakly nonlinear, low energy stable NNM
manifold.

In order to check the validity of the asymptotic approximations, we per-
formed direct simulations of the original set (34) (i.e., of the exact system
before averaging) with the same initial conditions used for the plots of Fig-
ures 8 and 9; the result is presented in Figure 10. It is clear from this
Figure that the damped dynamics is initially attracted by the damped in-
phase NNM manifold , as evidenced by the in-phase 1:1 resonant oscillations
of the NES and the LO, with nearly unit frequency. With diminishing am-
plitude of the NES, the critical amplitude is reached close to t˜50s, and
a transition of the damped dynamics to a the out-of-phase linearized low-
energy regime takes place, with the motion localizing to the LO. This is in
accordance with the predictions of the averaging analysis.

5 Targeted energy transfer in forced systems.

The first attempt of theoretical and experimental analysis of forced system
with attached NES was made in paper [(12)], where a capability of vibration
suppression was analyzed. It should be mentioned that only pure periodic
responses were considered there. The other complication – possibility of
co-existence of periodic and quasiperiodic regimes in forced systems with
the NES – has been revealed in paper [(13)]. Analytic methodology for
complete analysis of the periodic and quasiperiodic responses was suggested
in [(14),(15)].

It will be demonstrated that the steady state response of a primary
system under harmonic excitation with an attached NES exhibits not only
common steady – state and weakly modulated responses, but also a very
special type of responses characterized by very deep modulations of the
resulting oscillations. This type of the response is referred to as Strongly
Modulated Response (SMR). Moreover, the SMRs are related to relaxation
oscillations of the corresponding averaged dynamical flows (the slow-flows of
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Figure 8. Response of the averaged system (37) in the regime of 1:1
resonance capture, for ε = 0.05, λ = 0.2, and initial conditions given by
χ1(0) = 0.7 + 0i, χ2(0) = 0.7 + 0i.

Figure 9. Real and imaginary parts of the complex modulation χ2 of the
NES plotted against time, in the regime of 1:1 resonance capture for ε =
0.05, λ = 0.2, and initial conditions χ1(0) = 0.7 + 0i, χ2(0) = 0.7 + 0i.
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Figure 10. Direct numerical simulation of the damped system (34) for
parameters ε = 0.05, λ1 = 0, λ2 = 0.01, and initial conditions x(0) =
v(0) = ẋ(0) = 0 and ẋ(0) = 0.7; the dynamics correspond to the analytical
results of Figures 8 and 9. The dotted line describes the LO dislacement,
the solid corresponds to the NES

the dynamics). The possible application of the NESs as strongly nonlinear
vibration absorbers for vibration isolation of harmonically forced single-
and multi-DOF primary subsystems is then discussed, and it is shown that
under certain conditions, the efficiency of the NESs as vibration isolators
can exceed that of properly tuned linear absorbers (or tuned mass dampers
– TMDs)

The simplest benchmark model includes a primary SDOF linear oscilla-
tor under harmonic external excitation with an ungrounded, lightweight and
essentially nonlinear NES attached [(14),(15)]. This system is described by
the following set of equations (after reduction to non-dimensional variables):

ÿ1 + ελ(ẏ1 − ẏ2) + (1 + εσ)y1 + (4ε/3)(y1 − y2)
3 = εA cos t

εÿ2 + ελ(ẏ2 − ẏ1) + (4ε/3)(y2 − y1)
3 = 0

(58)

where y1 and y2are the displacements of the linear oscillator and the attach-
ment respectively, ελ the damping coefficient, εA the amplitude of the ex-
ternal force, andεσ a frequency detuning parameter. The parameter ε << 1
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is the small parameter of the problem which scales the coupling between the
two oscillators, the damping forces, the amplitude of the external force, the
detuning parameter, and the mass of the NES. The coefficients A, λ, σ are
adopted to be of O(1). The coefficient of the nonlinear term can be modified
by proper rescaling of the dependent variables and the forcing amplitude;
the value (4ε/3) is chosen for the sake of convenience. The dots denote a
differentiation with respect to time. A sketch of this system is presented in
Figure 11

Figure 11. Sketch of the dynamical model described by System (58).

We apply the following coordinate transformations, denoting the center-
of-mass and relative displacements of the system,

v = y1 + εy2
w = y1 − y2

(59)

and then switch the analysis to complex variables:

ϕ1 exp(it) = v̇ + iv
ϕ2 exp(it) = ẇ + iw

(60)

It is clear that one should seek periodic solutions of System (1) with dom-
inant frequencies identical to the frequency of the external periodic force,
and approximately equal to the eigenfrequency of the linear oscillator (that
is, the frequency detuning εσ provides a slight frequency mismatch). Hence,
a fundamental nonlinear resonances of System (58) should be studied.

After substitution of Equations (59) and (60) into System (58) and sub-
sequent averaging over the fast oscillations of frequency unity, the following
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slow–flow (complex modulation) equations are obtained:

φ̇1 +
iε

2(1+ε) (φ1 − φ2)− iεσ(φ1+εφ2)
2(1+ε) = εA

2

φ̇2 + λ(1 + ε)φ2

2 + i
2(1+ε) (φ2 − φ1)− iεσ(φ1+εφ2)

2(1+ε) − i(1+ε)
2 |φ2|2 φ2 = εA

2

(61)
The system of equations (61) has a complicated structure and cannot be
solved analytically. The first step towards analyzing its steady state so-
lutions is to perform local analysis of its equilibrium (fixed points). Such
analysis is of significant physical interest, since these points correspond to
periodic responses of the system described by System (58). To find the fixed

points one equates the time derivatives of System (61) to zero
(
φ̇1 = φ̇2 = 0

)
thus obtaining the following complex algebraic relations:

iε
2(1+ε) (ϕ10 − ϕ20)− iεσ(ϕ10+εϕ20)

2(1+ε) = εA
2

λ(1 + ε)ϕ20

2 + i
2(1+ε) (ϕ20 − ϕ10)− iεσ(ϕ10+εϕ20)

2(1+ε) − i(1+ε)
2 |ϕ20|2 ϕ20 = εA

2

(62)
The amplitude N20 = |ϕ20| provides the first – order approximation for
the amplitude of steady state periodic oscillation of the relative response
w = y1 − y2 - i.e., the displacement between the linear oscillator and the
NES – cf. System (58). This amplitude is directly related to the efficiency of
steady state TET in the system considered, since the capacity of the NES
to passively absorb and locally dissipate a significant portion of the energy
of the linear oscillator is directly tied to the relative response w attaining
large amplitudes. Indeed, large amplitudes of the relative response w sig-
nifies resonance interaction of the NES with the linear oscillator (which is
a prerequisite for the TET), and, in addition, it guarantees that the damp-
ing element coupling the NES to the linear oscillator strongly dissipates
vibration energy at steady state.

Depending on the parameters, System (61) can have one or three positive
(real) solutions. Therefore, due to continuity one expects generically that
at certain special critical values of the parameters A, λ and σ two of these
solutions will coalesce, yielding bifurcations of steady state periodic solu-
tions; generically, these will be saddle – node (SN) bifurcations. In addition
to the SN bifurcations, where a stable steady – state solution of the slow
flow simply disappears when it coalesces with an unstable one, there exists
one additional generic bifurcation scenario for loss of stability, namely, the
realization of Hopf bifurcations [(9)]. It can be studied by linear perturba-
tion of the fixed points corresponding to the solutions of System (58) and
corresponds to the case when a pair of complex conjugate roots of the char-
acteristic polynomial passes the imaginary axis. Typical projections of the
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solutions of System (62) on the two dimensional plane of parameters (A, λ)
for σ = 3 are presented in Figure 12 .

Figure 12. urves of (a) SN bifurcations for σ = 3; (b) Hopf bifurcations
for σ = 0.5 and ε = 0.05 (no SN bifurcations exist for the parameter values
chosen).

Additional important information concerning the local bifurcations of
the periodic solutions of the slow flow (61) may be obtained by construct-
ing frequency response diagrams; these depict the amplitude N20 of the
steady state periodic solution as function of the detuning parameterσ, for
fixed values of the amplitude of external forcing A, damping λ, and NES
mass ε. In Figure 13a representative frequency response diagram is pre-
sented; bifurcation points and stability types of branches of solutions are
also marked there. Recalling the assumptions of the analysis, the depicted
frequency response provides an approximate fundamental resonance plot of
System (58). Although plots of this type do not convey much new informa-
tion compared to the previously considered bifurcation diagrams, they are
directly applicable to the problem of vibration isolation since they depict
the amplitudes of steady state responses in the frequency domain. Regard-
ing the frequency response of Figure 13, one mentions that there exists an
upper stable branch of the steady state periodic solutions, corresponding
to large-amplitude stable periodic oscillations of the NES relative to the
linear oscillator; this branch co-exists with a stable low-amplitude branch
of periodic responses corresponding to low-amplitude relative oscillations.
Such ”detached” branches of the frequency response were recently studied
in somewhat similar systems [(16)].

Use of the CX-A approach for the analytical treatment of essentially
nonlinear systems assumes that the approximation (which is formally jus-
tified only for weakly nonlinear systems), will remain correct in the limit
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Figure 13. Frequency response diagram (fundamental resonance plot) for
A = 0.4, λ = 0.2 and ε = 0.01; bold lines refer to unstable regions of
periodic solutions, and thin lines to stable regions (SN and Hopf bifurcations
are also noted).

when the small parameter of the problem becomes of order unity. This
assumption requires additional verification by direct numerical simulations
of the initial System (58), to verify independently the predictions of the
analysis. The response regimes for certain sets of parameters are presented
in Figures 14a,b.

For the parameter values used for the numerical simulations of Figure
14a, the single real solution of Equation (62) N20 = |ϕ20| = 0.577. This
value is in agreement with the amplitude of the numerical solution depicted
in Figure 14a. The parameters for the simulation depicted in Figure 14b
were selected in order to study the response in the zone where the analysis
predicts that the periodic solution is unstable. Indeed, the numerical solu-
tion is in the form of a quasi-periodic oscillation, as evidenced by the slowly
modulated fast oscillation of Figure 14b. This type of solutions is referred
to as weakly modulated response (WMR).

One can conclude that the analytic approach presented above yields re-
liable predictions of the behavior of original forced System (58). Moreover,
the approach is rather sensitive, since the only difference between the plots
of Figures 14a,b is an 8% difference in the forcing amplitude A. Still, this
difference brings about qualitatively different responses and the analytic
approach succeeds to capture this fact. So, the results of the CX-A tech-
nique are reliable and valid, at least in the regime of fundamental nonlinear
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Figure 14. Relative response y1(t) − y2(t) of system (58) for (a)A =
0.225, λ = 0.2, ε = 0.05,σ = 0, y1(0) = 0.29, ẏ1(0) = 0.25, y2(0) = 0,
and ẏ2(0) = −0.15; (b) A = 0.24, λ = 0.2, ε = 0.05, σ = 0, y1(0) =
0.29, ẏ1(0) = 0.25, y2(0) = 0, and ẏ2(0) = −0.15.

resonances, and as long as the slow-fast partition of the dynamics in ansatz
(60) (which was a basic assumption of the analysis) is justified.

Still, one should pay attention to the special sets of initial conditions
used for producing the responses of Figures 4.14a,b. The reason is that the
response under consideration should be close enough to the fixed point of
the slow flow, since the analysis presented above is only local. It follows
that if the initial conditions are not specially tailored, the flow could be
attracted to alternative response regimes which do not satisfy the assump-
tions of the analysis, and hence, are not predicted by it. Indeed, it is a well
known feature of (forced or unforced) nonlinear dynamical systems that
they may possess qualitatively different co-existing solutions. It is true that
in many harmonically excited systems (especially weakly nonlinear ones)
steady-state responses such as the ones discussed above (that is, either sta-
ble or Hopf – modulated) may be the only types of steady state motions
that can be possibly realized by these systems. For the essentially nonlinear
System (58), however, this is not the case.

The latter claim is substantiated by performing numerical simulations
of the original System (58) for the same parameter values used to generate
the transient responses depicted in Figures 14, but now with zero initial
conditions. The results are presented in Figures 15 respectively. In both
plots one can see a qualitatively new type of response regime involving a
strongly modulated, nearly periodic oscillation. In the beginning of each
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cycle the amplitudes of both responses v = y1 + εy2 and w = y1 − y2 grow
slowly. Then, after a certain amplitude threshold is reached, the amplitude
of the motion of the center of mass v abruptly decreases, whereas, the
relative response between the NES and the linear oscillator, w, is excited
with subsequent decay.

Figure 15. Strongly modulated responses (SMRs) of system (58) for (a)
A = 0.225, λ = 0.2, ε = 0.05, σ = 0 and zero initial conditions; (b)
A = 0.225, λ = 0.2, ε = 0.05, σ = 0 and zero initial conditions.

It is easy to demonstrate that for these values of parameters, the averaged
flow has only one fixed point in both cases, and the responses presented in
Fig. 14 correspond to exactly these fixed points. The results depicted in
Fig.15 are very different indeed. This means that the system can exhibit
steady state response regimes (e.g., the presented strongly modulated ones)
which in principle cannot be captured by local analysis of the fixed points of
the averaged flow.

In order to distinguish this type of steady state response from those de-
rived by the local analysis of the previous Sections and related to the fixed
(equilibrium) points of the slow flow (61), this response is denoted as a
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Strongly Modulated Response (SMR). The width of the amplitude modula-
tion is equal to the response amplitude, and the analytical treatment of such
responses poses distinct challenges. Indeed, as discussed above in order to
analyze SMRs local analysis of the slow flow equations (61) is insufficient,
and, rather global analysis of the dynamics is required. In general, such a
challenging analytical problem is hardly solvable, since the slow flow (61)
is essentially nonlinear and evolves in four dimensional phase space. Still,
assuming that the mass ε (which can also be regarded as a mass ratio in
the normalized System (58)) is sufficiently small, it may be used as a small
parameter for performing singular perturbation analysis. It should be men-
tioned that in the local analysis of the previous Sections the smallness of ε
was not required and not assumed.

The analysis of SMRs starts from combining the two first-order equa-
tions of the slow flow from System (61) through simple manipulations, and
reducing the slow flow to the following single second order complex ordinary
differential equation,

d2ϕ2

dt2 + d
dt

[
αϕ2 − i(1+ε)

2 |ϕ2|2 ϕ2 +
iε(1−σ)
2(1+ε) ϕ2

]
+

iε(1−σ)
2(1+ε)

[
αϕ2 − i(1+ε)

2 |ϕ2|2 ϕ2 − εA
2

]
− iεβ(1+εσ)

2(1+ε) ϕ2 = εAβ
2

(63)

where,

α =
λ(1 + ε)2 + j

(
1− ε2σ

)
2(1 + ε)

, β =
j(1 + εσ)

2(1 + ε)

In the sequence, a multiple scales analysis of the solutions of Equation
(63) is performed by the multiple-scales analysis (4.26, 4.40). Substituting
expansions (39) into Equation (63) and setting equal to zero the coefficients
of powers of ε, one derives the following hierarchy of problems at successive
orders of approximation:

O
(
ε0

)
:

∂2ϕ2

∂τ20
+

∂

∂τ0

[
λϕ2

2
+

iϕ2

2
− i

2
|ϕ2|2 ϕ2

]
= 0 (64)

O
(
ε1

)
: 2 ∂2ϕ2

∂τ0∂τ1
+ ∂

∂τ1

[
λϕ2

2 + iϕ2

2 − i
2 |ϕ2|2 ϕ2

]
+ (1−σ)

4 |ϕ2|2 ϕ2+

+ ∂
∂τ0

[
λϕ2

2 + i(1−σ)ϕ2

2 − i
2 |ϕ2|2 ϕ2

]
+

[
σ
4 + iλ(1−σ)

4

]
ϕ2 − iA

4 = 0

· · ·
(65)

Equation (64) describes the leading order approximation of the evolution of
the slow flow (averaged) dynamics. Similarly to (40), this equation can be
trivially integrated,

∂

∂τ0
φ2 +

(
j

2
φ2 +

λ

2
φ2 − j

2
|φ2|2 φ2

)
= C(τ1, τ2, ...) (66)



www.manaraa.com

Nonlinear Normal Modes in Damped-forced Systems 189

where C(τ1, τ2, ...) is an arbitrary function of higher order time scales.
Higher order time scales are not considered in the current analysis, since
as shown below the dynamical phenomena in question are captured by the
leading order approximations. Then, one obtain the slow invariant mani-
fold (SIM) described by (46-refeq46). The phase θ(τ1) of the fixed point is
evaluated by:

θ(τ1) = argC(τ1)− tan−1

[
1− Z(τ1)

λ

]
(67)

In the case λ < 1/
√
3 the fold lines L1,2=

{
N(τ1) =

√
Z1,2, θ(τ1) ∈ [0, 2π)

}
divide the stable and unstable branches of the SIM. In Figure 16 the pro-
jection of the two-dimensional SIM on the plane (N, 4 |C|2)is depicted; the
fold lines correspond to the local maximum and minimum points of the SIM
(Figure 16).

Figure 16. Projection of the slow invariant manifold of the system (SIM)
for λ = 0.2; the unstable branch is denoted by dashed line, and arrows de-
note hypothetic transitions (jumps) in the regime of relaxation oscillations.

It is well-known [(17), (18)] that such a folding structure of the SIM may
give rise to relaxation-type oscillations, characterized by sudden transitions
(jumps) of the response during each cycle (the hypothetic sudden transitions
between the two stable branches are denoted by arrows at Figure 16). The
conjecture is that such relaxation oscillations occur in the SMRs described
above. Still, such motions may be possible only if the dynamical flow can
reach the fold lines L1,2, while following the two branches of the SIM with
respect to the slow time scale τ1.
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In order to assess this possibility one should investigate the behavior of
the flow on the SIM given by Φ(τ1). To this end, the O(ε) subproblem
(65) derived by the multiple scales expansion. Considering equation (65)
in the limit τ0 → +∞, and taking into account the asymptotic stability of
points on the stable branches with respect to time scale τ0, one derives the
following equation for motion on the SIM governed by the slow time scale
τ1:

∂Φ

∂τ1
=

2
[(

λ− i+ 2i |Φ|2
)
G+ iΦ2G∗

]
λ2 + 1− 4 |Φ|2 + 3 |Φ|4 (68)

where

G = −1− σ

4
|Φ|2 Φ−

[
σ

4
+

iλ(1− σ)

4

]
Φ+

iA

4

Expressing this complex relation in terms of its modulus and phase through
the polar transformation Φ(τ1) = N(τ1) exp [iθ(τ1)], one obtains the dy-
namical system on the cylinder (N, θ) ∈ (

R+ × S1
)
governing the slow

evolution on the SIM at time scale τ1.
For particular case A=0 the phase portrait of system (68) is presented

in Figure 17.

Figure 17. Phase portrait of the slow evolution of the SIM for the case of
no external harmonic excitation, A = 0.

The phase trajectories on the upper stable branch slowly evolve directed
towards the fold line L2, whereas the trajectories on the lower stable branch
are not able to reach the fold line L1. This means that although the dy-
namics can make a sudden transition (jump) from the upper stable branch
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of the SIM to the lower one, it cannot make a similar transition back. Ac-
tually, this ends up as a rather trivial observation since in the absence of
external harmonic forcing the dynamics cannot reach a nontrivial steady
state regime, as it is damped out by dissipation towards the state of trivial
(zero) equilibrium.

In order to allow for jumps from the lower stable branch of the SIM back
to the upper one (and, therefore, to provide the necessary condition for the
occurrence of relaxation oscillations) the slow flow in the vicinity of L1

should undergo bifurcation. That is, at some subset of L1 the orbits of the
slow flow lines on the lower branch of the SIM should become tangent to L1.
Such points correspond to fixed points of a desingularized slow flow [(18)],
where the numerator of equation (68) vanishes. In order to investigate these
special points, one should compute the fixed points of the slow flow equation
(68) for arbitrary amplitudes of the external harmonic excitation A. The
appropriate condition reads,(

λ− i+ 2i |Φ|2
)
G+ iΦ2G∗ = 0 (69)

and possesses two sets of solutions (fixed points). The first set is trivial and
is computed by setting G = 0; this solution corresponds to fixed points of
the initial equation (62), i.e., to fixed points of the global flow that (quite
naturally) lie on the SIM.

The other set of solutions satisfies the following conditions:

3 |Φ|4 − 4 |Φ|2 + 1 + λ2 = 0

exp (2i argG) = −iΦ2/
[
λ+ i

(
2 |Φ|2 − 1

)] (70)

The first equation in (70) coincides with the equation for the fold lines;
therefore, as expected, the solutions of this type describe the folded sin-
gularities of the slow flow. Bifurcations of such singularities correspond to
violations of the transversality condition and, therefore, yield qualitative
changes of the flow in the vicinity of the fold line. Specifically, these bifur-
cations result in a switch of the directions of the flow lines and therefore
provide the necessary conditions for relaxation oscillations. What is even
more interesting is that equations (70) may be solved in closed form. Indeed,
introducing again the polar transformation Φ(τ1) = N(τ1) exp [iθ(τ1)], (70)
yields the following solutions for the positions of the singularities on the
fold lines L1 and L2:

L1 : N1 = Z
1/2
1 , θ = Θ1,2 ≡ γ01 ± cos−1

⎡
⎣ λN1

A

√
(1−N2

1 )
2
+ λ2

⎤
⎦
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L2 : N2 = Z
1/2
2 , θ = Θ3,4 ≡ γ02 ± cos−1

[
λN2

A
√
(1−N2

2 )
2

+λ2

]

N1,2 = (4/3)±
[
(4/3)

2 − 4
(
1 + λ2

)
/3

]1/2
γ0k = sin−1

[
λ√

(1−N2

k)
2

+λ2

]
, k = 1, 2

(71)

Hence, for sufficiently weak external harmonic excitations, that is, for am-
plitudes of the harmonic excitation below the first critical threshold,

A < A1crit =
λN1√

(1−N2
1 )

2
+ λ2

(72)

no bifurcation close to the lower fold line L1 can occur. Then, the slow flow
in the vicinity of both fold lines of the SIM remains qualitatively similar
to that depicted in Fig. 17, providing no possibility for the occurrence
of relaxation oscillations (and thus of SMRs) in the slow flow (61). As
the forcing amplitude approaches the value A → A1crit from below, a SN
bifurcation occurs at L1, as θ → γ01, and a pair of singularities is formed;
in the interval between these points, the flow in the vicinity of L1 reverses
direction. The representative phase portrait describing the evolution of the
slow flow on the SIM for the amplitude of the external harmonic force in
the range A1crit < A is presented in Figure 18.

It follows from the plot of Figure 8 that after the occurrence of the SN
bifurcations close to the fold lines L1 and L2, there exists a subset of orbits
on the SIM that carry the flow to L1, thus providing the possibility for
a jump to the upper stable branch of the SIM, and, hence, to relaxation
oscillations. Indeed, the flow can reach the fold L2 and then jump down
again to L1, thus closing the loop of the relaxation oscillation and giving
rise to the SMR.

Still, the condition A > A1crit is necessary, but by no means sufficient
for the occurrence of SMRs in the slow flow (61). In other terms, if this con-
dition is valid then sudden transitions (jumps) between the stable branches
of the SIM may occur, but there is no guarantee that the series of these
transitions will accumulate to stable attractors of the slow dynamics in the
form of SMRs. In order to obtain the missing sufficient conditions for the
occurrence of SMRs one should investigate more delicate aspects of the slow
flow dynamics (61). This is performed next.

Studying carefully the phase portrait depicted in Figure 18, one observes
that there exists an interval of θ, namely, Θ1 < θ < Θ2, where all orbits on
the SIM arrive to the fold line L1 and then depart from it. In the regime of
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Figure 18. Phase portrait of the slow evolution of the SIM for the case
when A1crit < A and σ = 0.5; only the stable branches of the SIM are
depicted.

relaxation oscillations, an orbit in the previously constructed phase cylinder
(N, θ) ∈ (

R+ × S1
)
initially jumps from a point of this interval on L1 to

the upper branch of the SIM; then it slowly evolves following an orbit of
the slow flow towards the upper fold line L2, before jumping back to the
lower stable branch of the SIM; following an orbit of the slow flow it moves
towards the lower fold line L1 reaches it in one of the points of the interval
θ ∈ [Θ1,Θ2]; following this the orbit jumps up to the upper branch of the
SIM and the cycle of the relaxation oscillation (SMR) continues indefinitely.

Therefore, it is natural to consider this relaxation regime in terms of a
one-dimensional map P of the interval [Θ1,Θ2] of the fold line L1 into itself:

P : [Θ1,Θ2]
P−→ [Θ1,Θ2] , θ → P (θ)

In the regime of relaxation oscillations (SMRs) this map takes a point on
the fold line L1 of the cylinder (N, θ) ∈ (

R+ × S1
)
and maps it into L1

under the action of the super - slow flow (68). Clearly, a stable SMR will
correspond to an attractor of this map (for example, a period−k fixed point),
so the conditions for existence of this attractor will provide the necessary
and sufficient conditions for existence of the corresponding SMR in the slow
flow (61), and, hence, also in the original dynamical system (1) for NES
massε sufficiently small.

In order to construct the one-dimensional map P , one considers sepa-
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rately its ‘slow’ and ‘super-slow’ components during a cycle of the relaxation
oscillation. As far as the super-slow components of the map are concerned,
these correspond to the parts of the relaxation cycle spent on the lower and
the upper stable branches of the SIM. Hence, we may use equations (68)
and directly connect the ‘exit’ and ‘landing’ points on the fold lines L1 and
L2. Due to complexity of the associated expressions, in the following devel-
opments the ‘slow’ components of the map P are evaluated numerically.

As for the ‘slow’ components of the map, it is clear that the function φ2

should be continuous at the points of transition between the ’super-slow’
and the ‘slow’ components. Therefore, to model the jumps which provide
the ‘fast’ components of the map we should define appropriately the complex
invariant C(τ1). If the value of C(τ1) is known at the point of start of the
jump (the ‘exit’ point) between the two fold lines, it is possible to compute
the amplitude N and phase θ corresponding to the point of ‘landing’ of the
jump unambiguously, and thus to complete the definition of the map P . The
procedure of numerical integration should be performed twice, however, one
for each of the two stable (upper and lower) branches of the SIM; hence,
two values for the invariant C(τ1) should be computed for each of the two
‘slow’ components of the map in order to determine the ‘landing’ points of
the jumps in L1 and L2.

These two slow components correspond to the two jumps between fold
lines during each cycle of the relaxation oscillation. Fortunately, these fast
elements of the mapping cycle can be written down in closed form. For
example, if one knows the values of N and θ at the ‘exit’ point of the jump
on the fold line L1, say (N1, θ01), and denotes the ‘landing’ point on the
upper stable branch of the SIM by (Nu, θu), one may compute the value of
Nu by exploiting the invariance of C(τ1) on the fast component of the jump.
Similarly, the jump from an ‘exit’ point (N2, θ02) on the upper fold line L2to
the point (Nd, θd) on the lower stable branch of the SIM is described by the
discrete map. These maps are explicitly expressed as follows:

N1 → Nu =
√

2
3

(
1 +

√
1− 3λ2

)
, θ01 → θu = θ01 + tan−1

[
9λ
√
1−3λ2

−1+15λ2−√1−3λ2

]
N2 → Nd =

√
2
3

(
1−√

1− 3λ2
)
, θ02 → θd = θ02 − tan−1

[
9λ
√
1−3λ2

−1+15λ2+
√
1−3λ2

]
(73)

It should be stressed that for each point of the interval [Θ1,Θ2] only one
computation is required for a single cycle of the map. The outlined con-
struction of the one-dimensional Poincaré map P is somewhat similar to the
procedure developed in [34] for analyzing chaotic attractors in regimes of
relaxation oscillations occurring in low-dimensional phase spaces. Clearly,
not every orbit which starts from the lower fold line L1 of the SIM will
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land within the interval [Θ1,Θ2], since it may be attracted to alternative
attractors lying either on the upper or lower stable branches of the SIM.
Of course, only those points which are mapped into this interval can carry
sustained relaxation oscillations and yield SMRs.

Representative examples of return maps are illustrated in Figure 19. The
map is defined for all points of the interval θ ∈ [Θ1,Θ2], since all of these
points are mapped into the same interval under the action of the map, which
is clearly contracting. Therefore applying the contracting map theorem one
proves the existence of a stable attractor of the map in the interval [Θ1,Θ2],
which corresponds to a sustained regime of relaxation oscillations and thus
to an SMR of the slow flow (61). In this case, the attractor is the stable
period-one fixed point θe ≈ 0.51.

Figure 19. ne-dimensional map P for A = 0.6, λ = 0.2 and σ = 1; the
stable attractor of the map is denoted by dashed line.

By varying the detuning parameter and by carefully studying the struc-
ture of the map, we may determine the value of σ for which the period-one
attractor of the map disappears, and thus investigate the dynamical mech-
anism responsible for its appearance. Hence, one obtains an analytic tool
for determining the frequency region of existence of SMRs. For the system
considered with A = 0.6 and λ = 0.2, the boundaries of the detuning pa-
rameter within which the SMR exists are determined as, σR = 2.69 > σ >
σL = −2.0546. Considering the transformations relating the slow flow to
the exact equations of motion, one concludes that the SMRs in system (68)
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exists in an O(ε) neighborhood of the exact resonance.
The previous global analysis of the dynamics identified the mechanism

of creation and annihilation of the stable and unstable periodic orbits (limit
cycle oscillations, LCOs) of the slow flow in the neighborhood of the upper
boundary σ = σR of the frequency detuning range of existence of SMRs.
A projection of a representative stable LCO (SMR) on the phase cylinder
(N, θ) ∈ (

R+ × S1
)
is presented in Figure 20. This orbit clearly depicts the

slow evolution of the dynamics on the upper and lower stable branches of
the SIM (denoted by solid lines), and the fast transitions (jumps – denoted
by dashed lines) when the orbit reaches the fold lines L1 and L2.

Figure 20. Projection of the stable LCO corresponding to a SMR for A =
0.3, λ = 0.2 and σ = 0.5: dashed lines refer to ‘slow’ jumps between the
two stable branches of the SIM; solid lines refer to ‘super - slow’ evolutions
on the stable branches of the SIM.

Once the dynamics is reduced to the one-dimensional map P , one expects
that the system will exhibit generic bifurcations that occur in general classes
of this type of dynamical systems.

It should be mentioned that the analytical approach developed in this
Section is valid only in the limit ε → 0, i.e., only for the case of lightweight
NESs. In [(15)] comparisons between the previous analytical results and
direct numerical simulations of system (68) were performed that validated
the previous asymptotic analysis.

Suppression of the LCO in the self-excited Van der Pol (VdP) oscillator
with the NES attached was considered in [(19)] (see also [(3)], v. II). The
approach involved extensive numeric simulations and local analysis of the
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averaged flow equations. Main result of these studies is that the NES is
capable of suppressing the LCO in the primary structure with the self-
excitations.

• The first mechanism is is characterized by a recurrent series of sup-
pressed burst-outs of the heave and pitch modes of the wing, leading
eventually to complete suppression of the aeroelastic instabilities;

• The second mechanism is characterized by intermediate or partial sup-
pression of LCOs. In other terms, the LCOs persist but have relatively
small amplitude;

• The third mechanism is the most effective for suppressing the aeroe-
lastic instabilities, as it results in complete and permanent elimination
of LCOs.

In all works mentioned in the previous paragraph, efficient suppression of
the LCOs with the help of the nonlinear energy sink was observed, either
numerically or experimentally. In the following sections, the theoretical
explanation of these results will be presented [(20), (4)].

As the simplest possible model of the self – excited system with the NES,
let us consider common Van der Pol oscillator with attached purely cubic
NES II (ungrounded) with linear damping. The initial system of equations
describing this system can be written as follows:

m1
d2

dt2x1 + c d
dtx1(x

2
1 −A2) + qx1 + γ( d

dtx1 − d
dtx2) +K(x1 − x2)

3 = 0

m2
d2

dt2x2 + γ( d
dtx2 − d

dtx1) +K(x2 − x1)
3 = 0

(74)
In this system, mi, i=1,2 are the masses of the primary oscillator and the
NES respectively, q is the linear stiffness of the VDP oscillator, coefficients
c and A characterize the combination of positive and negative damping in
the VDP model, γ and K are the damping coefficient and the nonlinear
stiffness of the NES respectively. After rescaling, system (74) is reduced to
a non-dimensional form with four independent parameters:

ü1 + εαu̇1(u
2
1 − 1) + u1 + ελ(u̇1 − u̇2) +

4
3εk(u1 − u2)

3 = 0
ü2 + λ(u̇2 − u̇1) +

4
3k(u2 − u1)

3 = 0
(75)

where

τ = ωt, ω=
√
q/m1

, ui = xi/A, i = 1, 2,

ε=m2/m1
, α=cA2/

m2ω
2, λ = γ/m2ω, k=3KA2/

4m2ω
2

,

the dot denotes the differentiation with respect to τ .
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Let us introduce new coordinate, representing a relative displacement in
the NES:

w = u1 − u2 (76)

With account of (46), system (45) is rewritten as follows:

ü1 + εαu̇1(u
2
1 − 1) + u1 + ελẇ + 4

3εkw
3 = 0

ẅ + (1 + ε)λẇ + 4
3 (1 + ε)kw3 + εαu̇1(u

2
1 − 1) + u1 = 0

(77)

System (77) is the basis for further analysis. As in the sections above, the
motion of the system is studied in the vicinity of 1:1 resonance manifold,
where all variables oscillate with frequency close to the natural frequency
of the VDP oscillator. Change of variables

ϕ = (u̇1 + iu1) exp(−it), ξ = (w + iw) exp(−it)

and subsequent averaging over the ”fast” unit frequency yields the following
”slow – flow” equations:

ϕ̇ = − εα
2 ϕ

(
|ϕ|2
4 − 1

)
− ελ

2 ξ + iεk
2 |ξ|2 ξ

ξ̇ = i
2 (ϕ− ξ)− (1+ε)λ

2 ξ + i(1+ε)k
2 |ξ|2 ξ − εα

2 ϕ
(
|ϕ|2
4 − 1

) (78)

Further reduction of System (78) is performed by splitting the complex
variables ϕ and ξ into modulus and argument parts:

ϕ = R exp(iδ1), ξ=P exp(iδ2), δ=δ1 − δ2

Ṙ = − εα
2 R

(
R2

4 − 1
)
− ελ

2 P cos δ + εk
2 P 3 sin δ

Ṗ = −R
2 sin δ − (1+ε)λ

2 P − εα
2 R

(
R2

4 − 1
)
cos δ

δ̇ = 1
2 − (1+ε)k

2 P 2 − R
2P cos δ + ε

2

(
λP
R sin δ + kP 3

R cos δ + αR
P

(
R2

4 − 1
)
sin δ

)
(79)

Fixed points of system (79) can be described by single algebraic equation
[(20)], but the problem is that the system under consideration possesses
dynamic regimes which are not related to fixed points of the slow flow (78).
Numerous examples of such behavior will be presented below. Treatment
of these regimes requires global analysis of system (79); the latter seems to
be impossible without further simplifying assumptions.

It is natural to suggest that the NES has small weight compared to the
mass of the principal oscillator. Besides, the averaging procedure performed
above has a chance to be valid if the frequency of vibrations is close to
the natural frequency of the primary linear oscillator. In other terms, one
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can adopt the following assumptions concerning the order of magnitude of
coefficients in system (79):

ε << 1, α, k, λ ∼ O(1) (80)

In this case, just similarly to the treatments in Section 4.3, system (79) can
be considered as problem of singular perturbation with two ”slow” and one
”super-slow” variable. The term ”slow” is related to the evolution of the
averaged flow (80), whereas the term ”fast” is reserved for the oscillations
which were averaged out. So, the analysis of the initial problem requires
consideration of three time scales.

In order to perform the analysis, we introduce the time scales as: τ0 =
τ, τ1 = ετ . At ”slow” time scale, system (79) is reduced to the following
form:

∂R
∂τ0

= 0
∂P
∂τ0

= −R
2 sin δ − λ

2P
∂δ
∂τ0

= 1
2 − k

2P
2 − R

2P cos δ

(81)

From (81) it follows that R = R(τ1) and two last equations can be considered
as planar system. This planar system has no limit cycles and all trajectories
are attracted to fixed points, which, in turn, depend on the ”super – slow”
time τ1:

N(τ1) = lim
τ0→∞

P (τ0, τ1), Δ(τ1) = lim
τ0→∞

δ(τ0, τ1)

From (81) one obtains:

sinΔ(τ1) = −λN(τ1)
R(τ1)

, cosΔ(τ1) =
N(τ1)(1−kN2(τ1))

R(τ1)

R2(τ1) = N2(τ1)(λ
2 + (1− kN2(τ1))

2)
(82)

In the following we will omit for brevity the explicit dependence on τ1.
Besides, we use the notations Y = R2, Z = N2. In these notations, the
last equation of (82) is rewritten as

Y = Z(λ2 + (1− kZ)2) (83)

Quite naturally, it is a slight modification of the SIM (46), since the same
NES is used. For the analysis of the super-slow flow, it is enough to take
only the first equation of system (79). In the limit τ0 → ∞ it yields:

∂R

∂τ1
= −α

2
R

(
R2

4
− 1

)
− λ

2
N cosΔ +

k

2
N3 sinΔ (84)

Substituting equations for Δ(τ1) from (82) and multiplying by R, one ob-
tains:

∂Y

∂τ1
= αY (1− Y/4)− λZ (85)
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Substituting the expression for the SIM (83) into (85), one obtains the
following equation for Z(τ1):

∂Z

∂τ1
=

Z
[
α(λ2 + (1− kZ)2)(1− Z

4 (λ
2 + (1− kZ)2))− λ

]
1 + λ2 − 4kZ + 3k2Z2

(86)

Equation (86) can be solved in quadratures, but it is rather awkward task.
In order to analyze the dynamics of the system qualitatively, we need only
know how the fixed points of (86) are situated at the SIM. For this sake,
one has to find zeros of the numerator in (86). It involves solution of fifth
– power algebraic equation, and is rather difficult in parametric form (one
has to use elliptic theta – functions etc.). Instead, in the next section we are
going to present these fixed points graphically, as intersection of the SIM
(83) and parabola defined by the right – hand side of (85) equal to zero:

αY (1− Y/4)− λZ = 0 (87)

In this review, only the most interesting response regimes are presented.
More complete analysis can be found in [(20)].

Let us consider the following set of parameters:

α = 0.15, λ = 0.15, k = 0.36, ε = 0.05 (88)

In Figure 21 we present two curves: the SIM (83), denoted by the thick
line, and parabola (87) – by the thin line. They intersect only for Z=0
and it is the only stable fixed point of the flow. It corresponds to complete
elimination of the LCO.

Let us check this prediction numerically. In Fig. 22 numeric simula-
tion of the initial system (45) is presented. Fig. 22a describes the re-
sponse of the primary VDP oscillator and 22b – that of the NES (relative
displacementw(t) = u1(t)− u2(t)). Initial conditions for the simulation are
specified in the figure caption.

As one can see, the LCO in this case is very efficiently suppressed. More
prolonged simulation yields for u1 at t=5000 the maximum displacement
close to 0.0007. Of course, the actual displacement will never be exactly
zero, but still this case can qualify for complete elimination of the LCO.

It is possible to demonstrate that this regime exists only provided that
[(20)]:

λ

α
> 1 + λ2 ⇒ α <

λ

1 + λ2
=

1

λ+ 1/λ
(89)

Quite obviously, the latter condition can be fulfilled only for α<0.5. So, if
α is not too large, one can choose the NES parameters in order to achieve
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Figure 21. The case of complete LCO elimination. Thick line corresponds
to the SIM (83), thin line – to parabola (87). The small circle at Z=0
denotes stable fixed point

the complete elimination of the LCO. If it is not the case, one can try to
use higher value of the relative mass ε, thus achieving lower effective value
of α. If by some reason it is not feasible, on should rely on alternative (but
less efficient) mechanisms of the LCO suppression.

Let us consider the next set of parameters, where the LCO is not elimi-
nated completely:

α = 0.6, λ = 0.3, k = 0.4, ε = 0.05 (90)

The diagram of the super-slow flow on the SIM is presented in Fig. 23. One
can see that the only stable fixed point corresponds to small – amplitude
steady – state oscillations at the lower branch of the SIM. In this case the
LCO does not disappear completely but is suppressed partially.

Numeric verification of this regime is presented in Figs. 24a,b. One
can see that the regime of partial LCO suppression is indeed observed.
Moreover, the amplitudes both of the primary oscillator and the NES are
successfully predicted in Fig. 24 (square roots of the ordinate and the
abscissa of the stable fixed point respectively).
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Figure 22. Numeric simulation for the case of the complete LCO sup-
pression (set of parameters (88). Initial conditions: u1(0) = 0, u̇1(0) =
0.36, u2(0) = 0, u̇2(0) = 0. a) Time series for primary VDP oscillator u1(t);
b)Time series for relative NES displacement w(t)= u1(t)- u2(t).

The last example of possible response regimes describes a global bifurca-
tion – a birth of saddle – node pair on the upper branch of the SIM (Figure
25). This Figure is produced for the set of parameters

α = 1.3, λ = 0.3, k = 0.4, ε = 0.05 (91)

Figure 25 suggests co-existence of two stable response regimes – high –
amplitude LCO oscillations (node at the upper branch) and the SMR. These
regimes have well- defined basins of attraction. Namely, the trajectories with
all initial conditions above the dashed horizontal line passing through the
upper saddle will be attracted to the stable node, and below this line – to
the SMR. In order to verify this prediction we simulate the response for two
sets of initial conditions, denoted as points 1 and 2 in Fig. 25. The results
are presented in Figs. 26 a,b and are in complete agreement with the above
prediction.

If α grows even further, the SMR disappears. It happens when the
upper saddle crosses the ”landing point” of the upper SIM branch Zu. One
of possible sets of parameters for this critical situation is

α = 2.318, λ = 0.3, k = 0.4 (92)

Corresponding diagram is presented in Fig. 27.
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Figure 23. The case of partial LCO elimination. The small cross at Z=0
denotes unstable fixed point, the arrows at the SIM branches denote the
directions of the super – slow flow.

Figure 24. Numeric simulation for the case of the partial LCO suppression
– set of parameters (90) Initial conditions: u1(0) = 0, u̇1(0) = 1, u2(0) =
0, u̇2(0) = 0. a) Time series for primary VDP oscillator u1(t); b)Time series
for relative NES displacement w(t)= u1(t)- u2(t)
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Figure 25. Co-existence of stable SMR and stable LCO regime (set of
parameters (91)). The super – slow flow allows the SMR (denoted by dashed
arrows and arrows at the SIM). Horizontal dashed line divides between
basins of attractions of two stable regimes. Point 1 has coordinates (1,1)
Point 2 – (2,2).

It is easy to see that in this critical situation the cycle of the relaxation
oscillations becomes a homoclinic trajectory of the saddle point at the up-
per SIM branch. This cycle disappears if the saddle moves downwards on
the branch. Such scenario is equivalent to Shilnikov homoclinic bifurca-
tion of the limit cycles [(17)]. In this case, the homoclinic connection is
formed in the system and then the limit cycle disappears. Normally, it is
not easy to prove that the homoclinic connection exists in a system with
dimensionality 3 or higher. In our case, however, for ε →0 this trajectory
can be easily demonstrated. Existence of such connection is preserved un-
der small variations of parameters [(17)]; therefore we can state that this
bifurcation scenario should exist also for ε small, but finite. When the
SMR approaches the homoclinic connection, one should expect significant
growth of the modulation period – at the connection it will be ”exactly infi-
nite”. Such elongation, observed numerically [(20)], confirms the suggested
scenario of the bifurcation.
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Figure 26. Relative NES displacement for the case of co-existence, set of
parameters (91). Initial conditions correspond to points 1 and 2: (a) u1(0) =
0, u̇1(0) = 1, u2(0) = 0, u̇2(0) = 0, (b) u1(0) = 0, u̇1(0) = 1.4, u2(0) =
0, u̇2(0) = 0

Figure 27. Homoclinic connection leading to the Shil’nikov bifurcation
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The methodology presented in this Section paves a way for global asymp-
totic analysis of the self – excited systems with the NES. Periodic responses,
global bifurcations of different types, as well as co-existence and basins of at-
traction of various self – excitation regimes are revealed. All that is possible
due to radical simplifications related to ”slow – super-slow” decomposition
of the averaged flow. Qualitatively, the coincidence between the theory and
numeric simulations is complete. Quantitatively, some deviations in the
critical values of parameters (up to 10%) were observed.

At this step, it is instructive to analyze common features and differences
between the cases of external forcing and self – excitation in systems with
the NES. The first obvious common feature is the relevance of three differ-
ent time scales. The first one is related to ”fast” oscillations of the primary
system with its eigenfrequency, and to the frequency of the external force.
Averaging over this fast frequency yields the slow – flow equations, like (37),
(61), (79) and others. It should be mentioned here, that in all examples de-
scribed in this review, the nonlinearity is strong and therefore the averaging
is performed beyond formal framework of the averaging theory. Still, good
numeric coincidences confirm that in the context of the problems considered
the procedure can be used, although with some caution.

The slow – flow equations, in turn, also involve two different time scales.
At this stage, the separation of ”slow” and ”super-slow” time scales is justi-
fied by use of small parameter ε related to the mass ratio between the NES
and the primary mass, as well as to the characteristic scales of the damping
and the forcing terms. The dimensionality of the ”slow” flow both for the
external and self – excitation is equal to 2; more exactly, the ”slow” flow
exists in the space R+ × S1 in both cases. The ”super-slow” flow, however,
is very different: for the systems with external excitation it is two – dimen-
sional (R+ × S1), whereas for the systems with self – excitation it turns
out to be one – dimensional (R+). These similarities of the slow flow and
difference with respect to the super-slow flow have crucial consequences for
the dynamics of both systems.

First of all, similar structure of the slow flow brings about similarity of
possible dynamical responses. In both systems one observes responses with
constant amplitude (single or co-existing); these steady-state responses can
loose stability via Hopf bifurcation, leading to weakly modulated response
(WMR). The latter responses were revealed both for externally excited and
self – excited systems. In addition, both systems exhibit the strongly mod-
ulated responses (SMRs), related to relaxation oscillations of the slow flow
on the slow invariant manifold (SIM); the latter is similar for both types of
systems. In the same time, the difference in the dimensionality of the super
– slow flow brings about qualitatively different generic bifurcations of the
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steady-state responses as well as the SMRs. For the systems with exter-
nal excitations, the two – dimensional super – slow flow causes the ”jump”
domain at the fold line to be one – dimensional; then, the discrete map
which governs the behavior of the SMRs, is one – dimensional (R1 → R1).
Therefore, the generic bifurcations of the SMRs are the same as the generic
bifurcations of the one – dimensional discrete maps (saddle – node, period
doubling). Both these bifurcations of the SMRs were observed in the com-
plete system [(14), (15)], where they are equivalent to the saddle – node
bifurcations of tori and to global change of the structure of the attractor,
respectively. For the systems with self – excitation the super – slow flow
is one – dimensional and the ”jump domain” is a single point. Of course,
the above bifurcations are not possible for this ”map”, however, some other
generic possibilities arise. The bifurcations of SMRs in such a system occur
due to passage of the fixed points of the super – slow flow through the fold
points (Hopf bifurcation and canard explosion, [(17))] or through the ”land-
ing” points at the SIM (Shilnikov bifurcation). Another possibility is related
to the saddle – node bifurcation of the fixed points at the SIM (heteroclynic
bifurcation). All these bifurcations are possible, in principle, also for the
system with higher dimensionality of the super – slow flow, but they will
be not generic and will have co-dimension two. So, it is extremely difficult
to find the values of parameters to observe these bifurcations, taking into
account the approximate nature of the whole approach.

The difference in dimensionalities of the super –slow flow between the
externally excited and the self – excited systems reveals itself also in different
relationship between the SMRs and other types of the response. In the
systems with self – excitation, the full – scale SMR appears as a result of
”canard explosion” [(20)]. To illustrate this point, let us consider the system
of VdP oscillator with the NES with the following set of parameters:

α = 1, λ = 0.3, k = 0.4, ε = 0.05 (93)

one obtains the following diagram (intersection of the SIM (83) and parabola
(85), Figure 28):

Both fixed points at this diagram are unstable and the only possible
response regime is the stable SMR. It is interesting to investigate how the
transition from the steady – state low – amplitude response to the SMR
occurs. If one compares Figure 21 and Figure 28, it is clear that the transi-
tion occurs when the stable fixed point crosses the fold to the unstable SIM
branch. In the lowest – order approximation used here, the fully developed
SMR immediately substitutes the steady – state response However, initial
averaged system (79) is smooth and such singular behavior is impossible in
it. Namely, the transition described here is regular Hopf bifurcation and
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Figure 28. The case of stable SMR. Both fixed points are unstable, the
super slow flow allows the SMR (denoted by dashed arrows and arrows at
the SIM)

the limit cycle born should have small amplitude. This contradiction arises
since the lowest – order approximation is insufficient in the vicinity of the
fold. Typical behavior in such situation is exactly the canard explosion
[(17)]: the amplitude of the limit cycle grows to full – scale relaxation oscil-
lations with exponentially small variation of the governing parameter. The
analysis presented here treats only the shape of the modulation envelope;
so, it is instructive to verify whether such mechanism will be observed for
the modulation amplitude in complete dynamic flow (74). In order to see
sharp transition, lower value of ε =0.005 is used. Results of numeric simu-
lation are presented in Fig. 29, the values of parameters are mentioned in
figure captions.

One can see that the Hopf bifurcation of the modulation envelope occurs
at about α ≈0.706 and the amplitude of the limit cycle in the modulation
amplitude is small, as required. This regime can be identified as the weakly
modulated response (WMR), mentioned above. This amplitude steadily
grows up to α ≈0.716 and then ”explodes” to full – scale SMR at α ≈0.717.
This picture completely coincides with the canard explosion scenario men-
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Figure 29. Canard explosion of the modulation in the complete flow. NES
displacement versus time is presented. The parameters are ε = 0.005, λ =
0.3, k = 0.4. Parameter α is varied: a) α =0.705; b) α =0.708; c) α =0.716,
d) α =0.717
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tioned above. Analytic estimation yields α ≈0.716, in excellent agreement
with the numeric results.

So, in the case of the self-excited systems the relationship between the
WMR and the SMR is straightforward – the SMR develops from the WMR
by smooth variation of the system parameters. For the systems with exter-
nal excitation, the situation is completely different – the SMR generically
arises as a result of saddle – node bifurcation of limit cycles. It should be
mentioned, however, that also in this case the WMR and the SMR can be
related, for instance, through a mechanism of subcritical Hopf bifurcation
[(21)]; however, to establish this fact, more refined analysis taking into ac-
count high – order terms in approximate solution of singularly perturbed
equations is required.

In general, it is possible to conclude that in forced systems with the
small-mass NES the necessary condition for the SMRs is S-shaped struc-
ture of the SIM, which is completely determined by the slow flow. In all
examples presented above, this slow flow is described by two scalar ODEs
and is related to particular structure and coupling of the NES. However,
the sufficient conditions for the SMR, as well as the generic bifurcations,
are governed by the super-slow flow and the recurrence map of the jump
domain into itself. More exactly, the dimensionality of the recurrence maps
determines possible generic bifurcations.

To clarify this point further, let us consider the example with 2D slow
flow and 3D super – slow flow. Such behavior is realized if two linear
oscillators with close frequencies are considered; one of these oscillators
is capable of self – excitation and another is attached to the NES. The
equations of motion for this model look as follows:

ü1 + εαu̇1(u
2
1 − 1) + u1 + εp(u1 − u2) = 0

ü2 + u2 + εp(u2 − u1) + ελ(u̇2 − v̇) + 4
3εk(u2 − v)3 = 0

v̈ + λ(v̇ − u̇2) +
4
3k(v − u2)

3 = 0
(94)

Here u1,2 are displacements of the linear oscillators, v – that of the NES. Co-
efficient εp denotes the weak linear coupling between two linear oscillators.
For this system, one predicts that the averaging over the unit frequency
will bring about 5D average flow equations; the slow flow will be 2D, as in
the previous examples, whereas the super – slow flow will be 3D (2 vari-
ables related to the amplitudes of the linear oscillators and the third one
related to the phase difference between them). Therefore, the SIM will have
qualitatively the same structure as in all previous examples; however, the
”jump” recurrence map will have the dimensionalityR2 → R2. One of im-
mediate consequences of this ”complication” is that one can expect that
this nonlinear map will have considerable regions in the space of parameter,
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corresponding to chaotic attractors. In the initial state space of System
(94), such chaotic attractors will correspond to chaotic modulations of the
SMRs. Such behavior was observed neither in externally forced nor in self
– excited systems with lower dimensions. However, for system described
by equations (94) such SMR with chaotic-like modulations turns out to be
generic. An example of such dynamic response is presented in Figure 30.

Figure 30. Relative displacement of the NES, System (94). The param-
eters are ε =0.05, α =0.5, p=1, k=1, λ =0.2, initial conditions are zero
besidesu̇1(0) = 0.1

This example demonstrates that one can predict generic behavior of the
dynamic systems with the NES based on dimensionalities of the slow and
super – slow flows in averaged equations of motion.

6 Concluding remarks

Usually one perceives the nonlinear normal modes as particular exact solu-
tions of the nonlinear dynamical system which are ”synchronous”, or, more
generally, belong to a certain low-dimensional invariant manifold. In rare
instances these exact solutions can be found analytically. More often one
can assess them with the help of approximate procedures, such as an aver-
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aging or a harmonic balance; these approximate predictions may be checked
with the help of appropriately designed numeric procedures.

From the results presented above one can conclude that the direct ex-
tension of this concept of the NNM for the damped case is hardly possible.
For analytic continuation one should use ”complex” modes of the linear
damped systems. Moreover, loosely defined NNMs in the damped system
do not survive passage through the bifurcation - in other terms, they may
be fundamentally unstable, even if their ”conservative” counterparts are
perfectly stable. Moreover, it is not clear why such direct extension would
be useful and what problems it could help to solve.

However, some ”shift of paradigm” allows obtaining useful notion of the
damped NNMs. If the system has special asymptotic structure, the damped
NNM appears as the slow invariant manifold which attracts the dynamics
at fast time scale. As it was demonstrated in Sections 3 and 4, such no-
tion of the NNM allows predictive treatment of the TET problem, both in
the damped and forced-damped cases. This case is very different from the
”regular” invariant manifolds that appear in conservative problems. In the
latter, the choice of ”master” variables is in a sense arbitrary; in the TET
problem the invariant manifold is uniquely defined by the asymptotic struc-
ture of the system. So, the NNM in this case is provably special solution.
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1 Introduction

Most existing constructive techniques for computing NNMs are based on
asymptotic approaches and rely on fairly involved mathematical develop-
ments. In this context, algorithms for the numerical continuation of periodic
solutions are really quite sophisticated and advanced (see, e.g., (1; 2), and
the AUTO and MATCONT softwares). These algorithms have been exten-
sively used for computing the forced response and limit cycles of nonlinear
dynamical systems. Interestingly, there have been very few attempts to
compute the periodic solutions of conservative mechanical structures (i.e.,
NNM motions) using numerical continuation techniques. One of the first
approaches was proposed by Slater in (3) who combined a shooting method
with sequential continuation to solve the nonlinear boundary value problem
that defines a family of NNM motions. Similar approaches were considered
in Lee et al. (4) and Bajaj et al. (5). A more sophisticated continuation
method is the so-called asymptotic-numerical method. It is a semi-analytical
technique that is based on a power series expansion of the unknowns pa-
rameterized by a control parameter. It is described in the next chapter.
In this study, a shooting procedure is combined with the so-called pseudo-
arclength continuation method for the computation of NNM motions. We
show that the NNM computation is possible with limited implementation
effort, which holds promise for a practical and accurate method for deter-
mining the NNMs of nonlinear vibrating structures.

This chapter is organized as follows. In the next section, the proposed
algorithm for NNM computation is presented. Its theoretical background
is first recalled, and the numerical implementation is then described. Im-
provements are also presented for the reduction of the computational bur-
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den. The proposed algorithm is then demonstrated using three different
nonlinear vibrating systems in Section 3.

2 Numerical Computation of NNMs

The numerical method proposed here for the NNM computation relies on
two main techniques, namely a shooting technique and the pseudo-arclength
continuation method. It is summarized in Figure 1.

2.1 Shooting Method

The equations of motion are

Mẍ(t) +Kx(t) + fnl {x(t), ẋ(t)} = 0 (1)

where M is the mass matrix; K is the stiffness matrix; x, ẋ and ẍ are
the displacement, velocity and acceleration vectors, respectively; fnl is the
nonlinear restoring force vector, assumed to be regular. In principle, systems
with nonsmooth nonlinearities can be studied with the proposed method,
but they require a special treatment. The equations of motion can be recast
into state space form

ż = g(z) (2)

where z = [x∗ ẋ∗]∗ is the 2n-dimensional state vector, and star denotes
the transpose operation, and

g(z) =

(
ẋ

−M−1 [Kx+ fnl(x, ẋ)]

)
(3)

is the vector field. It is assumed that the mass matrix is invertible. The so-
lution of this dynamical system for initial conditions z(0) = z0 = [x∗

0 ẋ∗

0]
∗

is written as z(t) = z (t, z0) in order to exhibit the dependence on the initial
conditions, z (0, z0) = z0. A solution zp(t, zp0) is a periodic solution of the
autonomous system (2) if zp(t, zp0) = zp(t+T, zp0), where T is the minimal
period.

The NNM computation is carried out by finding the periodic solutions
of the governing nonlinear equations of motion (2). In this context, the
shooting method is probably the most popular numerical technique (1; 2; 6).
It solves numerically the two-point boundary-value problem defined by the
periodicity condition

H(zp0, T ) ≡ zp(T, zp0)− zp0 = 0 (4)

H(z0, T ) = z(T, z0) − z0 is called the shooting function and represents the
difference between the initial conditions and the system response at time
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T . Unlike forced motion, the period T of the free response is not known a
priori.

The shooting method consists in finding, in an iterative way, the initial
conditions zp0 and the period T that realized a periodic motion. To this
end, the method relies on direct numerical time integration and on the
Newton-Raphson algorithm.

Starting from some assumed initial conditions z
(0)
p0 , the motion z

(0)
p (t, z

(0)
p0 )

at the assumed period T (0) can be obtained by numerical time integration
methods (e.g., Runge-Kutta or Newmark schemes). In general, the initial

guess (z
(0)
p0 , T

(0)) does not satisfy the periodicity condition (4). This is il-
lustrated in Figure 2 for a Duffing oscillator

ẍ+ x+ 0.5x3 = 0 (5)

Two pairs of initial conditions, [x(0) ẋ(0)] = 0.9×[4.9009 0] and [x(0) ẋ(0)] =
1.1× [4.9009 0], are two approximations to the actual solution, [x(0) ẋ(0)] =
[4.9009 0], for the current period T = 2.0215 s. The former (latter) approx-
imation yields a motion with a too large (small) period.

A Newton-Raphson iteration scheme is therefore to be used to correct an

initial guess and to converge to the actual solution. The corrections Δz
(0)
p0

and ΔT (0) are found by expanding the nonlinear function

H
(
z
(0)
p0 +Δz

(0)
p0 , T

(0) +ΔT (0)
)
= 0 (6)

in Taylor series

H
(
z
(0)
p0 , T

(0)
)
+

∂H

∂zp0

∣∣∣∣
(z

(0)

p0 ,T (0))

Δz
(0)
p0 +

∂H

∂T

∣∣∣∣
(z

(0)

p0 ,T (0))

ΔT (0) +H.O.T. = 0

(7)
and neglecting higher-order terms (H.O.T.).

The initial conditions zp0 and the period T characterizing the periodic
solution are computed through the iterative procedure

z
(k+1)
p0 = z

(k)
p0 +Δz

(k)
p0 and T (k+1) = T (k) +ΔT (k) (8)

with

∂H

∂zp0

∣∣∣∣
(z

(k)

p0 ,T (k))

Δz
(k)
p0 +

∂H

∂T

∣∣∣∣
(z

(k)

p0 ,T (k))

ΔT (k) = −H
(
z
(k)
p0 , T

(k)
)

(9)

where k is the shooting iteration index. Convergence is achieved when
H(zp0, T ) ≈ 0 to the desired accuracy. In the neighborhood of the solution,
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the convergence is fast (i.e., quadratic convergence for an exact evaluation of
the Jacobian matrix). However, it should be kept in mind that the Newton-
Raphson method is a local algorithm; the convergence is guaranteed only
when the initial guess is sufficiently close to the solution.

Each shooting iteration involves the time integration of the equations of
motion to evaluate the current shooting residue

H
(
z
(k)
p0 , T

(k)
)
= z(k)

p
(T (k), z

(k)
p0 )− z

(k)
p0 .

As evidenced by equation (9), the shooting method also requires the eval-
uation of the partial derivatives of H(z0, T ) = z (T, z0) − z0. The 2n × 1
vector ∂H/∂T is given by

∂H

∂T
(z0, T ) =

∂z (t, z0)

∂t

∣∣∣∣
t=T

= g (z (T, z0)) (10)

The 2n× 2n Jacobian matrix ∂H/∂z0 is provided by

∂H

∂z0
(z0, T ) =

∂z(t, z0)

∂z0

∣∣∣∣
t=T

− I (11)

where I is the 2n × 2n identity matrix. There are basically two means of
computing the Jacobian matrix ∂z(t, z0)/∂z0

1. This matrix represents the variation of the solution z(t, z0) at time
t when the initial conditions z0 are perturbed. It can therefore be
evaluated through a numerical finite-difference analysis by perturbing
successively each of the initial conditions and integrating the equations
of motion (2).

2. An alternative computation is obtained by differentiating the equa-
tions of motion (2) with respect to the initial conditions z0

∂

∂z0
[ż (t, z0)] =

∂

∂z0
[g (z (t, z0))] (12)

It follows

d

dt

[
∂z (t, z0)

∂z0

]
=

∂g(z)

∂z

∣∣∣∣
z(t,z0)

[
∂z(t, z0)

∂z0

]
(13)

with
∂z(0, z0)

∂z0
= I (14)
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since z(0, z0) = z0. Hence, the matrix ∂z(t, z0)/∂z0 at t = T can be
obtained by numerically integrating over T the initial-value problem
defined by the ordinary differential equations (ODEs) (13) with the
initial conditions (14).

In addition to the integration of the current solution z(t,x0) of (2), these
two methods for computing ∂z(t, z0)/∂z0 require 2n numerical integrations
of 2n-dimensional dynamical systems, which may be computationally inten-
sive for large systems. However, equations (13) are linear ODEs and their
numerical integration is thus less expensive. The numerical cost can be fur-
ther reduced if the solution of equations (13) is computed together with the
solution of the nonlinear equations of motion in a single simulation. We note
that the finite-difference procedure is required when g is nondifferentiable,
i.e., when the nonlinearities are nonsmooth.

In the present case, the phase of the periodic solutions is not fixed. If z(t)
is a solution of the autonomous system (2), then z(t+Δt) is geometrically
the same solution in state space for any Δt. The initial conditions zp0 can
be arbitrarily chosen anywhere on the periodic solution. This is illustrated
in Figure 2 for the Duffing oscillator (5) where different initial conditions
corresponding to the same periodic solution are shown. Hence, an additional
condition has to be specified in order to remove the arbitrariness of the initial
conditions. Mathematically, the system (9) of 2n equations with 2n + 1
unknowns needs a supplementary equation, termed the phase condition.

Different phase conditions have been proposed in the literature (1; 2).
For instance, the simplest one consists in setting one component of the initial
conditions vector to zero, as in (7). This is illustrated in Figure 2 where
the depicted periodic solution of the Duffing oscillator is characterized by
a zero initial velocity. A phase condition particularly suitable for the NNM
computation is utilized in the present study and is discussed in Section 2.3.

In summary, the NNM computation is carried out by solving the aug-
mented two-point boundary-value problem defined by

F(zp0, T ) ≡
{

H(zp0, T ) = 0
h(zp0) = 0

(15)

where h(zp0) = 0 is the phase condition.
An important characteristic of NNMs is that they can be stable or un-

stable, which is in contrast to linear theory where all modes are neutrally
stable. In this context, instability means that small perturbations of the
initial conditions that generate the NNM motion lead to the elimination of
the mode oscillation. Nonetheless, the unstable NNMs can be computed
using the shooting procedure.
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The stability analysis can be performed when an NNM motion has been
computed by the shooting algorithm. The monodromy matrix ΦT of a
periodic orbit zp (t, zp0) of period T is defined by its 2n × 2n Jacobian
matrix evaluated at t = T

ΦT (zp0) =
∂zp (t, zp0)

∂zp0

∣∣∣∣
t=T

(16)

Perturbing the initial conditions with the vector Δz0 and expanding the
perturbed solution z(T, zp0 +Δz0) in Taylor series yields

Δz(T ) = ΦT (zp0)Δz0 +O(‖Δz0‖2) (17)

where Δz(T ) = z(T, zp0 +Δz0)− zp(T, zp0).
Equations (17) shows that the monodromy matrix provides the first-

order variation of the periodic solution after one period. After m periods,
one obtains

Δz(mT ) = [ΦT (zp0)]
m
Δz0 +O(‖Δz0‖2) (18)

The linear stability of the periodic solution calculated by the shooting
algorithm is studied by computing the eigenvalues of its monodromy matrix
ΦT . The 2n eigenvalues, termed Floquet multipliers, provide the exponential
variations of the perturbations along the eigendirections of the monodromy
matrix. If a Floquet multiplier has a magnitude larger than one, then the
periodic solution is unstable; otherwise, it is stable in the linear sense.

2.2 Continuation of Periodic Solutions

As discussed previously, the conservative system (2) comprises at least
n different families of periodic orbits (i.e., NNMs), which can be regarded
as nonlinear extensions of the LNMs of the underlying linear system. Due
to the frequency-energy dependence, the modal parameters of an NNM
vary with the total energy. An NNM family, governed by equations (15),
therefore traces a curve, termed an NNM branch, in the (2n+1)-dimensional
space of initial conditions and period (zp0, T ). As stated before, there may
also exist additional NNMs (i.e., bifurcating NNMs) that are essentially
nonlinear with no linear counterparts.

In this study, the NNMs are determined using methods for the numerical
continuation of periodic motions (also called path-following methods) (1; 2).
Starting from the corresponding LNM at low energy, the computation is
carried out by finding successive points (zp0, T ) of the NNM branch. The
space (zp0, T ) is termed the continuation space.

Different methods for numerical continuation have been proposed in
the literature. The so-called pseudo-arclength continuation method is used
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herein.

Sequential Continuation
The simplest and most intuitive continuation technique is the sequential

continuation method. This procedure is first explained due to its straight-
forward implementation. Moreover, it provides the fundamental concepts
of continuation methods.

The sequential continuation of the periodic solutions governed by (15)
is carried out in three steps:

1. A periodic solution (zp0,(1), T(1)) at sufficiently low energy (i.e., in
the neighborhood of one LNM) is first computed using the shooting
method. The period and initial conditions of the selected LNM are
chosen as an initial guess.

2. The period is incremented, T(j+1) = T(j) +ΔT .
3. From the current solution (zp0,(j), T(j)), the next solution (zp0,(j+1),

T(j+1)) is determined by solving (15) using the shooting method with
the period fixed:

z
(k+1)
p0,(j+1) = z

(k)
p0,(j+1) +Δz

(k)
p0,(j+1) (19)

where

∂F

∂zp0

∣∣∣∣
(z

(k)

p0,(j+1)
,T(j+1))

Δz
(k)
p0,(j+1) = −F(z

(k)
p0,(j+1), T(j+1)) (20)

The initial conditions of the previous periodic solution are used as a

prediction z
(0)
p0,(j+1) = zp0,(j). Superscript k is the iteration index of

the shooting procedure, whereas subscript j is the index along the
NNM branch.

Eventually, one NNM branch is computed.

Pseudo-Arclength Continuation
The sequential continuation method parameterizes an NNM branch us-

ing the period T . It has two main drawbacks:
1. Because the convergence of the Newton-Raphson procedure depends

critically on the closeness of the initial guess to the actual solution,
the sequential continuation requires fairly small increments ΔT .

2. Because the value of the period is fixed during the Newton-Raphson
corrections, it is unable as such to deal with turning points. This is
illustrated in Figure 3 where no solution exists for a period larger than
the period at the turning point.
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For better performance, a continuation algorithm uses a better prediction
than the last computed solution. In addition, corrections of the period are
also considered during the shooting process. The pseudo-arclength contin-
uation method relies on these two improvements in order to optimize the
path following of the branch.

Starting from a known solution (zp0,(j), T(j)), the next periodic solution
(zp0,(j+1), T(j+1)) on the branch is computed using a predictor step and a
corrector step.

At step j, a prediction (z̃p0,(j+1), T̃(j+1)) of the next solution (zp0,(j+1),
T(j+1)) is generated along the tangent vector to the branch at the current
point zp0,(j)

[
z̃p0,(j+1)

T̃(j+1)

]
=

[
zp0,(j)
T(j)

]
+ s(j)

[
pz,(j)

pT,(j)

]
(21)

where s(j) is the predictor stepsize. The tangent vector p(j) = [p∗

z,(j) pT,(j)]
∗

to the branch defined by (15) is solution of the system

⎡
⎢⎣

∂H

∂zp0

∣∣∣
(zp0,(j) ,T(j))

∂H

∂T

∣∣
(zp0,(j),T(j))

∂h

∂zp0

∗

∣∣∣
(zp0,(j))

0

⎤
⎥⎦

[
pz,(j)

pT,(j)

]
=

[
0

0

]
(22)

with the condition
∥∥p(j)

∥∥ = 1. The star denotes the transpose operator.
This normalization can be taken into account by fixing one component of
the tangent vector and solving the resulting overdetermined system using
the Moore-Penrose matrix inverse; the tangent vector is then normalized
to 1. For illustration, the predictor step is shown schematically in Figure 4.

The prediction is corrected by a shooting procedure in order to solve (15)
in which the variations of the initial conditions and the period are forced to
be orthogonal to the predictor step. At iteration k, the corrections

z
(k+1)
p0,(j+1) = z

(k)
p0,(j+1) +Δz

(k)
p0,(j+1)

T
(k+1)
(j+1) = T

(k)
(j+1) +ΔT

(k)
(j+1)

(23)

are computed by solving the overdetermined linear system using the Moore-
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Penrose matrix inverse

⎡
⎢⎢⎢⎣

∂H

∂zp0

∣∣∣
(z

(k)

p0,(j+1)
,T

(k)

(j+1)
)

∂H

∂T

∣∣
(z

(k)

p0,(j+1)
,T

(k)

(j+1)
)

∂h

∂zp0

∗

∣∣∣
(z

(k)

p0,(j+1)
)

0

p∗

z,(j) pT,(j)

⎤
⎥⎥⎥⎦

[
Δz

(k)
p0,(j+1)

ΔT
(k)
(j+1)

]

=

⎡
⎢⎣ −H(z

(k)
p0,(j+1), T

(k)
(j+1))

−h(z(k)
p0,(j+1))

0

⎤
⎥⎦ (24)

where the prediction is used as initial guess, i.e, z
(0)
p0,(j+1) = z̃p0,(j+1) and

T
(0)
(j+1) = T̃(j+1).

The last equation in (24) corresponds to the orthogonality condition for
the corrector step. We note that the partial derivatives in (24) are evaluated
numerically, as explained previously.

This iterative process is carried out until convergence is achieved. The
convergence test is based on the relative error of the periodicity condition:

‖H(zp0, T )‖
‖zp0‖ =

‖zp(T, zp0)− zp0‖
‖zp0‖ < ε (25)

where ε is the prescribed relative precision.
For illustration, the corrector step is shown schematically in Figure 4.

2.3 An Integrated Approach for the NNM Computation

The algorithm proposed for the computation of NNM motions is a com-
bination of shooting and pseudo-arclength continuation methods, as shown
in Figure 1. Starting from the LNM motion at low energy, there are two
steps within the algorithm:

1. The predictor step is global and goes from one NNM motion at a
specific energy level to another NNM motion at a somewhat differ-
ent energy level. For an efficient and robust NNM continuation, the
stepsize s(j) is to be carefully controlled. A small stepsize leads to a
small number of corrector iterations, but it requires a large number
of continuation steps to follow an NNM branch. For a large step-
size, the number of corrector iterations is high, and the convergence
is slow. The Newton-Raphson procedure may even break down if the
prediction is not close enough to the actual solution. Continuation
may therefore be computationally intensive in both cases. The step-
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size has to be adjusted, possibly in an automatic and flexible manner.
Various adaptive stepsize control procedures are discussed in (1).

2. The corrector step is local and refines the prediction to obtain the
actual solution at a specific energy level. The size of the corrections
during the corrector step is determined by the solutions of the overde-
termined system (24).

So far, the NNMs have been considered as branches in the continua-
tion space (zp0, T ). An appropriate graphical depiction of the NNMs is to
represent them in a FEP. This FEP can be computed in a straightforward
manner: (i) the conserved total energy is computed from the initial condi-
tions realizing the NNM motion; and (ii) the frequency of the NNM motion
is calculated directly from the period.

A widely-used method for solving first-order equations such as (2) is
the Runge-Kutta scheme. In structural dynamics where second-order sys-
tems are encountered, Newmark’s family of methods is probably the most
widespread technique for solving linear and nonlinear large-scale stiff struc-
tural systems. This family of numerical time integration methods is consid-
ered in this study.

The precision of the integration scheme, which is chosen by the end-
user, directly influences the accuracy of the NNM computation. In fact,
the computed solution can be regarded as an exact solution if the sam-
pling frequency used to integrate the equations is sufficiently high. This is
practically the only approximation in the proposed algorithm.

Unlike sequential continuation, the evolution path of this predictor-
corrector method is parameterized by the distance s(j) along the tangent
predictor, also referred to as arclength continuation parameter in the liter-
ature. As mentioned previously, the stepsize has to be carefully controlled
for a robust and efficient NNM computation.

The stepsize control used herein relies on the evaluation of the conver-
gence quality by the number of iterations of the corrector step. The stepsize
is controlled so that the corrector step requires on average the desirable num-
ber of iterations N�. At each step, the stepsize is updated according to the
ratio between the desirable number N∗ and the previous number N(j−1) of
iterations:

s(j) =

(
N∗

N(j−1)

)
s(j−1) (26)

In practice, the ratio r = N∗/N(j−1) is often bounded to make the adapta-
tion stepsize more robust and to prevent the continuation from jumping be-
tween different branches 1. The stepsize can also be bounded (s(j) < smax)

1Another possibility to avoid branch jumping phenomena is to limit the angle between

consecutive predictor steps.
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to obtain enough discretized points on the branch during the continuation.
In case of no convergence (i.e., when the residue increases or when the
process requires more correction iterations than the prescribed maximum
Nmax), the stepsize is halved until convergence is achieved.

As a final remark, we note that the sign of the stepsize is chosen in order
to follow the branch in the same direction, i.e.,[

s(j)p(j)

]
∗
[
s(j−1)p(j−1)

]
> 0 (27)

According to the previous predictor step and the current tangent vector,
the sign of s(j) is therefore given by

sign
(
s(j)

)
= sign

(
s(j−1)p

∗

(j)p(j−1)

)
(28)

Reduction of the Computational Burden
The algorithm described so far may become computationally intensive

when dealing with large-scale systems (i.e., systems with many DOFs). Be-
cause a practical and computationally tractable calculation of the NNM
motions is targeted, two properties of some NNM families can be exploited
to speed up the computation:

1. All symmetric NNM branches Snm obey the symmetry condition

zp

(
T

2
, zp0

)
+ zp0 = 0 (29)

For these branches, the shooting procedure can be performed over
the half period T/2 by searching the initial conditions and the period
T that solve this modified periodicity condition. Because the time
integrations represent the main computational cost of the algorithm,
this modified periodicity condition reduces the computational burden
by a factor close to 2.

2. For branches of NNMs represented by an open loop in the configura-
tion space, a suitable phase condition is to set all the velocities to zero.
The initial velocities are eliminated from the unknowns of the linear
systems to solve at each Newton-Raphson iteration. These systems
have therefore 2n+ 1 equations with n+ 1 unknowns xp0 and T .

One advantage is that these modifications can be very naturally integrated
in the basic algorithm in Figure 1.

In summary, two variants of the basic algorithm described in the previous
section have been developed:
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1. The general strategy consists in (i) carrying out the shooting over the
period T and (ii) setting only one velocity to zero. This strategy can
compute all possible NNM motions.

2. The practical strategy exploits the modified periodicity and phase con-
ditions. The fundamental NNM motions of nonlinear structures often
obey these conditions (e.g., the fundamental NNMs of nonlinear sys-
tems with odd nonlinearities are necessarily symmetric, because the
loss of symmetry requires the so-called symmetry-breaking bifurca-
tion).

Targeting a reduction of the computational burden, but without lack of
generality, an approach that integrates the two variants is used. Starting
from the LNMs, the fundamental NNM motions are first computed using
the practical strategy; a subset of tongues can also be computed using this
methodology. We note that the application of this strategy should often
suffice for most engineering structures.

When a detailed analysis of the unsymmetric NNMs and those repre-
sented by a closed curve in the configuration space is required, the general
strategy can then be utilized for computing these NNMs.

3 Numerical Experiments

In what follows, the proposed NNM computation method is demonstrated
using three different nonlinear vibrating systems, namely a weakly nonlinear
2DOF system, a discrete model of a nonlinear bladed disk and a nonlinear
cantilever beam discretized by the finite element method.

3.1 Weakly Nonlinear 2DOF System

The governing equations of motion are

ẍ1 + (2x1 − x2) + 0.5 x3
1 = 0

ẍ2 + (2x2 − x1) = 0
(30)

The two LNMs of the underlying linear system are in-phase and out-of-
phase modes for which the two DOFs vibrate with the same amplitude. The
natural eigenfrequencies are f1 = 1/2π � 0.159 Hz and f2 =

√
3/2π � 0.276

Hz.
The integrated approach described in Section 2.3 is applied to this sys-

tem. The computation of the fundamental NNMs is first performed using
the modified phase and periodicity conditions. The in-phase backbone S11+
is depicted in Figure 5(a), whereas the out-of-phase backbone S11− is given
in Figure 6. Though a large energy range is investigated, these figures show
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that the continuation method discretizes the two branches using very few
points. Large stepsizes are therefore employed, and only a few seconds are
required to computed each branch for 100 integration time steps per half
period using a 2GHz processor. This is an important feature when targeting
a computationally tractable calculation of the NNMs. The two backbones
are depicted together in the FEP in Figure 7. The family of in-phase NNM
motions is also represented in a three-dimensional projection of the phase
space in Figure 5(b) and in the configuration space in Figure 5(c).

The NNM continuation can now be carried out at higher energy levels.
The FEP for the in-phase mode is depicted in Figure 8. It can be ob-
served that a recurrent series of tongues of internally resonant NNMs (i.e.,
S31, S51, S71, etc.) continue the backbone branch S11+ through turning
points (fold bifurcations). Due to these turning points, smaller stepsizes are
necessary, which renders the tongue calculation more demanding computa-
tionally. By contrast, at higher energy on S11−, the 1:1 out-of-phase motion
persists, and S11− extends to infinity. The complete FEP calculated using
the practical strategy is shown in Figure 9.

We now move to the general strategy for the computation of unsym-
metric NNMs and NNMs represented by a closed curve in the configura-
tion space. These NNMs are generally generated through bifurcations (e.g.,
symmetry-breaking bifurcations for unsymmetrical NNMs). Because the
tangent is not uniquely defined at the bifurcation point, they require a
branching strategy to be effectively computed (1). In this study, a pertur-
bation technique is used to carry out branch switching, once the bifurcation
point is located using the Floquet multipliers. The resulting FEP is dis-
played in Figure 10 and shows two unsymmetrical tongues (U21 and U41).

The NNM stability is also briefly discussed. Because the monodromy
matrix is computed during the continuation procedure, its eigenvalues, the
Floquet multipliers, are obtained as a by-product. The stability of the fun-
damental in-phase and internally resonant NNMs is presented in Figure 11.
Clearly, the bifurcation points, which include fold and symmetry-breaking
bifurcations, are characterized by a change of stability. The evolution of
the Floquet multipliers along S31 is shown in the complex plane in Figure
12. This figure shows the mechanism of loss of stability; a pair of Floquet
multipliers leaves the unit circle through 1.

3.2 Nonlinear Bladed Disk System

The NNM motions of a more complex structure, a nonlinear bladed disk,
are now investigated. The bladed disk is composed of 20 sectors assembled
with cyclic periodicity; a single sector is represented in Figure 13. Each
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sector is modeled using disk (M) and blade (m) lumped masses, coupled by
linear (k) and cubic (knl) springs. The nonlinear springs can be represen-
tative of geometrically nonlinear effects in the blades. The disk masses are
connected together by linear springs K. The equations of motion of this
40-DOF system are

m ẍi + k(xi −Xi) + knl(xi −Xi)
3 = 0

M Ẍi +K(Xi −Xi+1) +K(Xi −Xi−1)+

k(Xi − xi) + knl(Xi − xi)
3 = 0

(31)

for i = 1, . . . , 20; X21 = X1, X0 = X20 (conditions of cyclic periodicity) and
M = 1, m = 0.3, K = 1, kl = 1, knl = 0.5. Xi and xi are the displacements
of the disk and blade masses of the ith sector, respectively.

As the structure is not fixed, the first mode is a rigid-body mode, which
is obviously not affected by the nonlinearities. Due to periodicity of the
structure, several elastic modes of the underlying linear system appear in
pair at the same frequencies, with only a spatial shift between them. It is the
case of the first two LNMs that possess one nodal diameter. Their nonlinear
extensions are represented in the FEP of Figure 14. The nonlinearities have
a slight, but identical (i.e., the backbones cannot be distinguished in the
FEP), influence on these two NNMs. Therefore, the continuation can be
performed by means of large stepsizes, and only a few seconds are necessary
to obtain the backbones for 100 time steps over the half period.

Nonlinear systems with spatial symmetries can possess similar NNMs.
This is illustrated in Figures 15 and 16 for the 21st NNM of the structure.
While its frequency is altered by the nonlinearities in the system, the distri-
bution of the modal shape remains unchanged, which characterizes similar
modes.

Finally, a higher mode (i.e., the 38th) for which the corresponding LNM
possesses one nodal circle and nine nodal diameters is investigated (see
Figures 17 and 18). Due to the presence of a nodal circle, the blade and
disk masses vibrate in an out-of-phase fashion, which enhances the nonlinear
effects. As a result, the frequency and the shape of the NNM are strongly
affected by the nonlinearities. Furthermore, for increasing energy, there is a
clear spatial confinement of vibrational energy to two sectors of the system.
Interestingly, this occurs in a perfectly symmetric bladed disk assembly,
which has no counterpart in linear theory. We note that the computation
of this branch needs approximately one minute for 100 time steps over the
half period.
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3.3 Nonlinear Cantilever Beam

As a final example, a planar cantilever beam discretized by 20 finite ele-
ments and with a cubic spring at the free end is considered. The geometrical
and mechanical properties of the beam are listed in Table 1. This models
a real nonlinear beam that was used as a benchmark for nonlinear system
identification during the European Action COST F3 (8).

The FEP of the first mode and the related NNM motions are plotted in
Figures 19 and 20. The frequency of the NNM motions on the backbone
increases with increasing energy levels, which highlights the hardening char-
acteristic of the cubic nonlinearity. The FEP also highlights the presence of
one tongue, revealing the existence of a 5:1 internal resonance between the
first two modes. When the energy gradually increases along the tongue, a
smooth transition from the first to the second mode occurs (see (e) and (f)
in Figure 20). The computation of the backbone branch up to the tongue
needs 5 minutes with 200 time steps over the half period. Due to the pres-
ence of turning points, the computation of the tongue is more expensive and
demands 10 minutes.

The second NNM is plotted in the FEP of Figure 21. Besides the NNM
backbone, three tongues are present. The first tongue corresponds to a
5:1 internal resonance between the second and fourth nonlinear modes of
the beam. Similarly, a 7:1 internal resonance between the second and fifth
modes, and a 9:1 internal resonance between the second and sixth modes
are observed.

Similar dynamics were observed for the higher modes and are not further
described herein.

4 Conclusion

In this chapter, a numerical method for the computation of nonlinear nor-
mal modes (NNMs) of nonlinear mechanical structures is introduced. The
approach targets the computation of the undamped modes of structures
discretized by finite elements and relies on the continuation of periodic so-
lutions. The proposed procedure was demonstrated using different nonlinear
structures, and the NNMs were computed accurately in a fairly automatic
manner. Complicated NNM motions were also observed, including a count-
able infinity of internal resonances and strong motion localization.

This method represents a first step toward a practical NNM computation
with limited implementation effort. For instance, the NNMs of a real-life
aircraft are computed in (9) using the proposed method.
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Table 1. Geometrical and mechanical properties of the planar cantilever
beam

Length Width Thickness Young’s mod. Density Nonlin. coeff.
(m) (m) (m) (N/m2) (kg/m3) (N/m3)

0.7 0.014 0.014 2.05e11 7800 6 109
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Figure 1. Algorithm for NNM computation.



www.manaraa.com

232 G. Kerschen

0 0.5 1 1.5 2
6

4

2

0

2

4

6

Time (s)

x

20 15 10 5 0 5 10 15 20
6

4

2

0

2

4

6

ẋ
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Figure 2. Solutions of the Duffing oscillator for different initial conditions.
Top plot: time series; bottom plot: phase space. —— : periodic solution for
[x(0) ẋ(0)] = [4.9009 0] and T = 2.0215s; −−− : solution for [x(0) ẋ(0)] =
1.1× [4.9009 0]; −·−·− : solution for [x(0) ẋ(0)] = 0.9× [4.9009 0]. Markers
represent different initial conditions of the periodic solution; ◦: [x ẋ] =
[4.9009 0]; �: [x ẋ] = [−1.0313 − 12.9188]; ♦: [x ẋ] = [−2.9259 11.8894].
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Figure 4. Pseudo-arclength continuation method: branch (——) with a
turning point; predictor step (→) tangent to the branch; corrector steps
(◦ ◦ ◦) perpendicular to the predictor step.
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Figure 5. In-phase NNM motions on S11+ for the 2DOF system (30). (a)
Frequency-energy plot; the computed points with N� = 4 are represented
by ◦. (b) NNM periodic motions represented in a three-dimensional pro-
jections of the phase space. (c) NNM modal curves in the configuration
space.
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represented by ◦.
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Figure 7. Frequency-energy plot of the 2DOF system computed with the
proposed numerical method. NNM motions depicted in the configuration
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Bottom plot: close-up of the recurrent series of tongues (S31, S51 and S71)
at high energy. The computed points are represented by ◦
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www.manaraa.com

Computation of Nonlinear Normal Modes… 241

10
2

10
0

10
2

0.16

0.17

0.18

0.19

0.2

0.21

0.22

Energy (log scale)

F
re
q
u
en
cy

(H
z)

S11+

U21
S31

Figure 11. Close-up of S11+ for the 2DOF system (30) with stability
results (——: stable NNMs; • • • : unstable NNMs).



www.manaraa.com

242 G. Kerschen

1 0.5 0 0.5 1 1.5

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

�

�
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by crosses.



www.manaraa.com

Computation of Nonlinear Normal Modes… 243

disk

blade
m

M

k

knl

KK

(a) (b)

Xi

xi

Figure 13. One sector of the nonlinear bladed disk assembly. (a) continuous
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the sector number, and the vertical axis represents the maximum displace-
ments of blade and disk masses (shown in black and grey, respectively).
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Figure 15. Frequency-energy plot of the 21st mode of the nonlinear bladed
disk assembly.
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Figure 16. Maximum amplitudes of the 21st NNM of the bladed disk sys-
tem at (a) low energy and (b) at high energy. The horizontal axis represents
the sector number, and the vertical axis represents the maximum displace-
ments of blade and disk masses (shown in black and grey, respectively).
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Figure 18. Maximum amplitudes of the 38th NNM of the bladed disk at
(a) low energy, (b-c) medium energy and (d) at high energy, corresponding
to the points in Figure 17. The horizontal axis represents the sector number,
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disk masses (shown in black and grey, respectively).
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Figure 20. Maximum amplitudes of the first NNM of the nonlinear beam
at different energy levels represented in Figure 19. (a-d): fundamental (1:1)
NNMs motions; (e,f): internally resonant NNM motions between mode 1
and mode 2.
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Abstract These notes correspond to the four lectures given by

Bruno Cochelin at the CISM course on “Modal Analysis of Non-

linear Mechanical Systems” held at Udine, from 25 to 29 june 2012.

The goal is to describe numerical methods which are complemen-

tary to those presented in the previous chapter by Gaetan Kerschen.

Once again a conservative nonlinear normal mode will be seen as

a one-parameter familly of periodic orbits. The Harmonic Balance

Method (HBM) will be used for computing periodic solutions and

the Asymptotic Numerical Method (ANM) will be used for the con-

tinuation of these periodic solutions. The methods and the results

presented above have been obtained with the collaboration of S.

Bellizzi, S. Karkar, E.H. Moussi and C. Vergez.

1 Introduction to HBM and ANM on a toy model

Before embarking into details, let us have a quick overview of both numerical
techniques on a toy model : the forced Duffing equation

ü+ 2μ u̇+ u+ u3 = f cos(ωt) (1)

where the damping factor μ, the force amplitude f and the angular fre-
quency ω are parameters.

1.1 Harmonic Balance Method (HBM)

The Harmonic Balance approach refers to a class of methods for com-
puting periodic solutions as follows. First, one assumes the solution to be
under the form of a truncated Fourier series with selected harmonic index.
For the Duffing equation, we choose to take the fundamental harmonic only
(index one)

u(t) = uc cos(ωt) + us sin(ωt). (2)
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Here, uc and uc are unknown amplitudes and the angular frequency ω is
assumed to be same as the one of the forcing term f cos(ωt). Second,
one inserts (2) into the (1), one uses elementary transformations such as
cos3(x) = 3

4 cos(x) +
1
4 cos(3x) ; cos2(x) sin(x) = 1

4 sin(x) +
1
4 sin(3x), and

one collects cosine and sine terms having the same harmonic index, to get

{ (1 − ω2)uc + 2μωus +
3
4u

3
c
+ 3

4ucu
2
s
} cos(ωt)

+{(1− ω2)us − 2μωuc +
3
4u

3
s
+ 3

4usu
2
c
} sin(ωt)

+{ . . . } cos(3ωt)
+{ . . . } sin(3ωt) = f cos(ωt)

(3)

Third, in (3) one drops all terms having a Fourier index different from those
used in the original assumption (2). Here, terms in cos(3ωt) and sin(3ωt)
are removed. The remaining equations correspond to the balance of the
harmonics having the same index as in (2)

(1− ω2)uc + 2μωus +
3
4u

3
c
+ 3

4ucu
2
s
= f

(1− ω2)us − 2μωuc +
3
4u

3
s
+ 3

4usu
2
c
= 0

(4)

Finally, one is faced to solve an algebraic system having two equations for
two unknowns uc, us and three parameters ω, μ, f .

1.2 Continuation

One now wants to explore the solutions of this 2 degrees of freedom
(d.o.f) algebraic system when one of the three parameters varies. For in-
stance, let μ = 0.05 and f = 0.2 be fixed parameters and let ω be the free
parameter. Let U = [uc, us, ω] be the vector containing both the unknowns
and the parameter and R be the vector of equations:

R(U) =

{
(1− ω2)uc + 2μωus +

3
4u

3
c
+ 3

4ucu
2
s
− f

(1− ω2)us − 2μωuc +
3
4u

3
s
+ 3

4usu
2
c
.

Since U ∈ R
3 and R ∈ R

2, the solution set of the algebraic problem

R(U) = 0 (5)

is made of one dimensionnal continua of solutions called solution branches.
Continuation methods (or path following methods) are designed for deter-
mining the solution set of (5) by traveling on the solution branches from
an initial known solution. In figure 1, we show the result of the contination
from the initial solution U = [0.195 0 0]. This diagram that shows the evo-
lution of uc and us with the parameter ω is called a bifurcation diagram 1.
Each solution point on that branch can be the initial solution point for the

1 Notice that plotting
√

u2
c + u2

s versus ω would gives the classical backbone curve of

the forced Duffing model.
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Figure 1. Bifurcation diagram

continuation with respect to another parameter than ω.
We will now go into the detail of both methods, beginning with the

continuation. The reason why will be given later on.

2 Continuation with Asymptotic Numerical Method

In this section, we describe a continuation process based on high order
Taylor series expansion of the solution branches. It has been originally called
the asympotic numerical method, Damil and Potier-Ferry (1990); Azrar et al.
(1993); Cochelin (1994) .

Let R(u, λ) = 0 be an algebraic system of n equations where u ∈ R
n is

a vector of n state variables and λ ∈ R a single control parameter (or bifur-
cation parameter). For the sake of compactness of notations, we introduce

the extended state vector U =

[
u

λ

]
∈ R

n+1 which includes the parameter λ

as its last component, and we write the algebraic system as

R(U) = 0 (6)

without distinguishing between state variables and parameter. The jacobian
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R,U =
[
R,uR,λ

]
is a n× (n+1) matrix composed of the square matrix R,u

and the colum vector R,λ.
Let U0 be a regular solution of (6), that is to say, a solution point

where a single branch of solution goes through. In practice, we require U0

to satisfy (6) only up to a given tolerance εR, i.e. , ||R(U0)|| < εR. By
definition of a regular solution, the jacobian R0

,U
at U0 has maximal rank

n. The normalized tangent U1 at U0 is one of the two solutions of the
following system

R0
,U
U1 = 0

UT
1 U1 = 1

(7)

having n linear equations and one quadratic equation. Notice that if U1 is
solution, the other solution is −U1. Let a = UT

1 (U −U0) be the pseudo-
arc length parameter defined as the projection of the branch onto the tan-
gent U1. According to the Implicit Function Theorem, the unique solu-
tion branch passing through U0 can be represented as a Taylor series in a.
The continuation process described hereafter relies on the computation of
these Taylor series (power series) at a high order of truncature N , say with
15 < N < 30,

U(a) = U0 + aU1 + a2U2 + ....+ aNUN . (8)

Let ac be the radius of convergence of the Taylor series, which is in
most situations a finite number2. When the order of truncature N is high,
the truncated power series (8) provides a very accurate representation of
the solution branch for a smaller than the radius of convergence ac (fast
convergence zone), and a very bad approximation for a greater than ac
(fast divergence zone). Around ac, the convergence or the divergence may
be slow. Because ac is finite, the representation (8) gives access only to a
limited part of the solution branch around the starting point U0 as it is
shown in figure 2.

We now define the “range of utility” of (8) as the interval [0, amax] for
which the truncated series satisfy the equation (6) up to a given required
tolerance. Generally, the maximal value amax of the path parameter a is
smaller that ac, so as to have an accurate enough solution. To fix the idea,
amax may be somewhere between 0.7ac to 0.9ac and we will see below how
this amax can easyly be determined.

In summary, the truncated series (8) with its range of utility [0, amax]
provides a continuous representation of the solution branch that starts at
U0 and that ends at the point U(amax). The principle of continuation is

2The case of zero radius of convergence or infinite radius of convergence are exceptions

rather than the rule.



www.manaraa.com

Numerical Computation of Nonlinear Normal Modes… 255

U

λ

U0

U1

U(amax)
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Exact branch

Truncated Taylor series(8)

Figure 2. Branch of solution passing through the regular point U0 : exact
branch and its Taylor representation

to take the last end point U(amax) as a new starting point U0, from which
a new truncated serie is computed. Finally, as it is shown in figure 2, the
solution branch is known as a succession of Taylor series representation (8)
having their own start point U0i and own range of utility amaxi

.

U

λ

U01

U02
U03

[0, amax1
]

[0, amax2
]

[0, amax3
]

Figure 3. The branch of solution is represented by a succession of Taylor
series that can be used inside their ”range of utility” [0, amaxi

]

In the following, we will show how to compute the series (6) and amax.
Then we will compare this continuation process with the classical first order
predictor-corrector (sometimes referred to as the Newton-Raphson method)
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that is described in reference papers or textbooks Keller (1987); Seydel
(1994); Doedel et al. (1991); Allgower and Georg (1990).

2.1 How to compute the serie efficiently

Two main strategies have been investigated:
• recast the original system of equations into a system with a polynomial
quadratic nonlinarity,

• use Automatic Differentiation tools for generating and dealing with
the Taylor series.

Hereafter, we focus on the first strategy which is the historical way and
we refer to Charpentier et al. (2008); Charpentier (2012) for readers inter-
ested in Automatic Differentiation within ANM continuation. We begin by
showing that if the system is polynomial and quadratic, then the computa-
tion of the series is rather straightforward. Then, we discuss the more subtil
question: “can any system be recasted into a polynomial quadratic one”

Computing series for a quadratic system Assuming that R(U) is
quadratic, it can be splitted into three parts representing the constant terms,
the linear ones and the quadratic ones as follows:

R(U) = L0︸︷︷︸
constant

+ L(U)︸ ︷︷ ︸
linear

+ Q(U,U)︸ ︷︷ ︸
quadratic

(9)

In (9), L(.) is a linear operator with respect to its argument and Q(., ∗)
is linear with respect to both arguments. Inserting the series (8) into (9)
and equating to zero each power of a gives the following succession of linear
systems:
• order 0: L0 + L(U0) + Q(U0,U0) = 0, which is obviously satisfied

since U0 is a solution.
• order 1: R0

,U
(U1) = 0

• order 2 ≤ p ≤ n: R0
,U
(Up) + Σp−1

i=1Q(Ui,Up−i) = 0

where R0
,U
(.) = L(.) +Q(U0, .) +Q(.,U0) is the jacobian at U0.

The original nonlinear problem has therefore been reduced to a series
of N linear systems with n equations. However, at each order, these linear
systems are under-determined since they have n+ 1 unknowns. The miss-
ing equations are obtained by inserting (8) into the definition of the path
parameter a given above. This yields
• order 1 : Ut

1U1 = 1
• order 2 ≤ p ≤ n : Ut

1Up = 0.
It should be noticed that these linear systems share the same jacobian ma-
trix, so this matrix is LU decomposed once for all.
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Recasting a given system into a quadratic one The basic idea of the
recast process consists in adding new variables and new equations so as to
keep only single product between variables. For example, if the expression
u3 appears in the equations, introduce the new variable v defined by the
quadratic relation v = u2, and rewrite u3 as the product uv. For an expres-
sion like u

v
, introduce the new variable w = u

v
and the quadratic relation

u = vw. For
√
u, introduce the new variable v and the quadratic relation

u = v2.
Let us now apply the recast on the toy system (4) having cubic expres-

sions. By introducing the new variables vc = u2
c
, vs = u2

s
and β = ω2,

we get the following quadratic system with 5 equations for 6 unknowns,

cst︷︸︸︷
−f +

linear︷︸︸︷
uc +

quadratic︷ ︸︸ ︷
(−βuc + 2μωus +

3

4
ucvc +

3

4
ucvs) = 0

0 + us + (−βus − 2μωuc +
3
4usvs +

3
4usvc) = 0

0 + vc − ucuc = 0
0 + vs − usus = 0
0 + β − ωω = 0.

(10)

As a second illustration, we consider the simple model with two equations
used in Doedel et al. (1991) for continuation illustration

r1(u1, u2, λ) = 2u1 − u2 + 100 u1

1+u1+u2

1

− λ = 0

r2(u1, u2, λ) = 2u2 − u1 + 100 u2

1+u2+u2

2

− (λ + μ) = 0.
(11)

Introducing the four new variables,

v1 = u1 + u2
1 v3 = 1

1+v1

v2 = u2 + u2
2 v4 = 1

1+v2

(12)

the following quadratic system with 6 equations and 7 unknowns is obtained

cst︷︸︸︷
0 +

linear︷ ︸︸ ︷
2u1 − u2 − λ +

quadratic︷ ︸︸ ︷
100u1v3 = 0

−μ + 2u2 − u1 − λ + 100u2v4 = 0
0 + v1 − u1 − u2

1 = 0
0 + v2 − u2 − u2

2 = 0
−1 + v3 + v1v3 = 0
−1 + v4 + v2v4 = 0.

(13)

It should be noticed that other choises of variables could have been made,
for instance v1 = 1+u1+u2

1 and v3 = 1
v1
. So, the recasted form is obviously
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not unique. The important point is that the recasted system should have
the same solutions than the original one. The recast process should lead
to a new way of writing the original system and not a modification of the
system. For the sake of completness, let us now detail an example where
classical mathematical functions appear,

r(u, λ) = u+ eu + tan−1(u)− λ (14)

We introduce two new variables v and w with the relation v = eu ,
tan(w) = u. Differentiating these relations with respect to the path pa-
rameter a permits to get polynomial equations between the variables and
their path derivatives

{
dv

da
= v du

da

(1 + u2)dw
da

= du

da

(15)

Then, setting x = u2, we can now replace (14) by the following quadratic
system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u+ v + w − λ = 0

dv

da
= v du

da

(1 + x)dw
da

= du

da

x− u2 = 0

(16)

Notice that the series computation algebra is slightly different in that case
because of the derivaties du

da
= u1 + 2au2 + 3a2u3 + . . . .

For concluding, we say that the process of adding suitable variables to
recast any system into a polynomial quadratic system is undoubtedly the
most difficult and surprizing part of the method. It is however a key point
for an efficient computation of the series today. Automatic Differentiation
is a promising way of removing this need of a quadratic recast.

2.2 Determining the range of utility of the series

Once the series (8) have been computed up to order N , one has to
determine their “range of utility”, i.e., the interval [0, amax] inside which
the solution U(a) satisfies the required tolerance ||R(U(a))|| < εR. The
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residual error of the truncated expression (8) is

R(U0 + aU1 + · · ·+ aNUN ) = R(U0)
+a R1︸︷︷︸

=0

+a2 R2︸︷︷︸
=0

+ · · ·+ aN RN︸︷︷︸
=0

+aN+1 RN+1︸ ︷︷ ︸
r.h.s at orderN+1

+ h.o.t.

(17)

where R(U0) is the residual error of the start point U0. The vectors
R1, . . . ,RN correspond to the linear systems solved at each order for com-
puting the U′

i
s and they are null. The first significant term is aN+1RN+1

where the vector RN+1 is exactely the right hand side vector of the linear
system at order N + 1. Inside the radius of convergence of the series, the
term aN+1RN+1 is greater than the following higher order terms (h.o.t.),
and a good approximation of the residual error is given by the simple ex-
pression

R(U0 + · · ·+ aNUN ) � R(U0) + aN+1RN+1 (18)

Recalling that ||R(U0)|| < εR, a natural tolerance requirement is that the
additional residual error aN+1RN+1 remains with the same order of magni-
tude as that of the start point U0. Hence, the requirement ||aN+1RN+1|| <
εR gives an explicit formula for the maximal value of the path parameter

amax =

(
εR

||RN+1||
) 1

N+1

(19)

In practice, the vector RN+1 is easy to compute and the cost for determinig
amax is negligeable.

2.3 Comparison with predictor-corrector algorithm

The first-order predictor-corrector algorithm is the most popular method
used today to compute solution branches. It works as follows: let U0 be a
regular solution of (6), a prediction point is computed as

Upred = U0 + apU1 (20)

where U1 is again the tangent vector at U0 and ap a prescribed scalar which
gives the distance fromU0 toUpred. SinceUpred is not an accurate solution,
Newton corrections are then applied to Upred so as to satisfy (6) up to the
required tolerance. Applying this process step by step, the method gives
the solution branch as a succession of solution points. A crucial issue for the
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efficiency of the continuation is to have a good step-length control strategy,
that is to say, a correct choise of ap at each step so as to avoid too small steps
which loose time unnecessarily and too large steps which involves divergence
of the Newton corrections. Second order predictor-corrector methods rely
on the improved prediction

Upred = U0 + apU1 + a2
p
U2 (21)

which limits the error on Upred and reduces the number of corrections.
We begin the comparison by noticing that both equation (20) and (21)

looks like (8) when it is truncated at order one or order two. So, the ANM
continuation could be seen as a kind of high-order predictor method which,
because the prediction is of high quality, does not need any correction. The
most important difference between ANM and prediction-correction is that
the path parameter a in (8) is let free and it is determined only after the serie
computation by analysing the convergence of the serie. On the contrary, the
step length ap of the prediction has to be fixed to a prescribed value in (20)
and (21) before embarking in the Newton corrections whose convergence is
not known apriori, but only estimated from the story of previous steps.

In summary, the main advantage of the ANM continuation are
• the solution branch is known as a succession of continuous represen-
tation given by Eq. (8) with a ∈ [0, amax] instead of a succession of
points.

• since all the linear systems to be solved have the same Jacobian matrix,
the computational cost of the series (8) remains low.

• the size amax of each continuous representation is not estimated in
advance but calculated aposteriori from the convergence properties
of the current step. No step-length control strategy is required with
ANM continuation.

• a high order Tayor series (8) contains many valuable information on
the computed branch. For instance, the presence of a simple bifurca-
tion can be easily detected as we will explained below.

On the other hand, the main drawback of the ANM continuation process
(as it has been presented above) is the need to recast the system of equation
under a quadratic polynomial form. This is generally the most difficult point
for a beginner with ANM. This drawback is now currently being removed
by using Automatic Differentiation for the generation of the series.

2.4 MANLAB and DIAMANLAB sofware

MANLAB is an interactive software program that implements ANM
continuation for bifurcation analysis of algebraic systems. The first ver-
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sion was programmed in Matlab using an objet-oriented approach by Ar-
quier (2007). The free open source research software can be downloaded at
Manlab (2012). MANLAB has a Graphical User Interface (GUI) with but-
tons, on-line inputs and graphical windows for generating, displaying and
analysing the bifurcation diagram and the solution of the system. To enter
the system of equations, the user has to provide three vector valued Matlab
functions corresponding to the constant, linear and quadratic operators L0,
L and Q. We gives these inputs for one of the example discussed above,
U = [u1, u2, v1, v2, v3, v4, λ] and μ = 0.05 :

function [L0] = L0 function [L] = L(U) function [Q] = Q(U,V)

L0=zeros(6,1); L=zeros(6,1); Q=zeros(6,1);

L0(1)= 0; L(1)=2*U(1)- U(2) -U(7); Q(1)=100*U(1)*V(5);

L0(2)= -0.05; L(2)=2*U(2)- U(1) -U(7); Q(2)=100*U(2)*V(6);
L0(3)= 0; L(3)=U(3)-U(1); Q(3)= -U(1)*V(1);
L0(4)= 0; L(4)=U(4)-U(2); Q(4)= -U(2)*V(2);

L0(5)= -1; L(5)=U(5); Q(5)= U(3)*V(5);
L0(6)= -1; L(6)=U(6); Q(6)= U(4)*V(6);

20 25 30 35
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Figure 4. Bifurcation diagram obtained with MANLAB for the two d.o.f.
example, showing evolution of u1 versus λ. The circle correspond to the
start points U0i of each continuation step.

DIAMANLAB is an improved and re-organized version of MANLAB
which implements Automatic Differentation for the series computation Char-
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Figure 5. Graphical user interface of DIAMANLAB.

pentier (2012). In DIAMANLAB, the user has to provide its vector of
equations under a natural form, as follows

function R = R(obj,U)

if isa(U,’Taylor’)

R=Taylor(get(obj,’order’),zeros(2,1));
end

u1=U(1); u2=U(2); lambda=U(3);

R(1) = 2*u1 - u2 + 100*u1/(1+u1+u1*u1) - lambda;
R(2) = 2*u2 - u1 + 100*u2/(1+u2+u2*u2) - (lambda+obj.mu);

2.5 Simple bifurcation detection and branch switching using Tay-

lor series

Bifurcation detection and branch switching are classical issues in numer-
ical continuation for which the theoretical backgrounds can be found again
in Keller (1987); Seydel (1994); Doedel et al. (1991); Allgower and Georg
(1990). This topic is of particular importance for nonlinear normal modes
computation in conservative systems because, due to the interactions be-
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tween modes through internal resonances, the branch of periodic solutions
have a great number of bifurcations.

We now address this problem of bifurcation with an approach which
is closely linked to the ANM continuation and which differs from classical
methods. As stated above, the truncated Taylor series (8) that are computed
during the continuation are full of relevant information about the followed
branches of solutions. For instance, these series can reveal if there is a
bifurcation on the branch, what kind of bifurcation it is and where exactely
it is located on the branch. We became aware of this important point by
analysing many different problems having simple bifurcations. We clearly
and systematically observed that in the vicinity of simple bifurcation point,
a geometric series emerges in the representation (8). More precisely, when
the start point U0 is closed to a simple bifurcation point, there exist an
order p over which the Up vectors of the Taylor series shows the remarkable
property

Up+1 � αUp Up+2 � αUp+1 ... (22)

This geometrical series which emerges at a high order is characterized by a
common ratio α and an emerging vector Ue. Numerical investigation also
reveals that 1

α
is the distance from U0 to the bifurcation point Uc and

that the vector Ue indicates the direction of the bifurcated branch at the
bifurcation point. We will explain these finding by using a simplified first
order approach and we refer to Cochelin and Médale (2013) for a deeper
analysis.

Elements of bifurcation theory Let Uc be a simple bifurcaton point
where two branches of solution of (6) cross each other. Let Ut1 and Ut2 be
the two tangents for each branch at Uc. The kernel of the jacobian matrix
Rc

,U
evaluated at Uc is two dimensional and we have

N (Rc

,U ) = Span {Ut1 ,Ut2}, N (Rc T

,U ) = Span {ψ}. (23)

According to the bifurcation theory, the expression for the branches at
Uc begins like

Order 1→ U = Uc + a1 Ut1 + a2 Ut2 + h.o.t.

A.B.E.→ ψTRc

,UU
Ut1Ut2︸ ︷︷ ︸

scalar μ1 �=0

a1 a2 = 0→ a1 a2 = 0 (24)

In the first equation (obtained at order one), a1 and a2 are free parameters.
The second equation is the so-called Algebraic Bifurcation Equation (second
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order projected on the left null vector) which finally implies that either a1
or a2 should be zero, i.e., the branch begins by following Ut1 or Ut2

Ut1

Ut2

Uc

Ut1

Ut2

Uc

Figure 6. Left : perfect case. Right : perturbed case

Let us now introduce a small perturbation in this analysis and see the
change. The reason for paying attention to perturbation is that the start
point U0 is not an exact solution of (6) and that the residual error R(U0)
does act as a very small perturbation in the system. Indeed, as we have
seen above in (17), the (non truncated) Taylor series U(a) = U0 + aU1 +
a2U2 + . . . computed at the start point U0 is the exact solution of

Rp(U) = R(U)−R(U0) = 0 (25)

which is a perturbed problem. Defining μ0 = ψT .R(U0) which is very small
but not zero, the expression of the branches for the perturbed problem are

Order 1→ U = Uc + a1 Ut1 + a2 Ut2 + h.o.t

A. B. E. → a1 a2 = μ0

μ1

(26)

Due to the perturbation the two straight branches shown on the left in
figure 6 become the two hyperbola shown on the right in figure 6. We are
now ready to give the expression of the branch from a start point which is
no more Uc, but a regular point U0 near Uc. Let a1 = −d and a2 = −μ0

μ1d

so as to define a point U0 which is on the perturbed branch

U0 = Uc − d Ut1 −
μ0

μ1d
Ut2 (27)

Let us make a shift of d for the path parameter a = a1 + d, The perturbed
branch can now be written

U(a) = U0 + a Ut1 −
μ0

dμ1

a

d

(1− a

d
)
Ut2 (28)
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Ut1

Ut2

U0

Uc

d

Figure 7. Perturbed branch of solution seen from a start point U0 on the
branch

This simplified first order analysis reveals the key point of the story: the

contribution of μ0

dμ1

a
d

(1−a
d
)Ut2 is very small3 exept when a is close to d. When

expanded into Taylor series, the rational fraction
a
d

1− a
d

= a

d
+(a

d
)2+(a

d
)3+· · · ,

is responsible for the emergence of a geometric series with common ratio 1
d

and emerging vector Ut2 .

Practical detection and switching Practically, the presence of a geo-
metrical series is easy to detect by analysing the last term of (6). When a
geometrical series is detected, it is extracted additively

U(a) = U0+a Û1+a2 Û2+ · · ·+an−1 Ûn−1+
(a

d
+ (

a

d
)2 + · · ·+ (

a

d
)n

)
Ue

(29)
and replaced by a rational fraction as

U(a) = U0 + a Û1 + a2 Û2 + · · ·+ an−1 Ûn−1︸ ︷︷ ︸
Û(a) cleaned series

+
a

d

(
1

1− a

d

)
Ue (30)

The cleaned series Û(a) permits to easily compute the bifucation point

as Uc = Û(d) and the two tangents using Ut1 = ∂Û

∂a
(d) and Ut2 =

βUt1 + γUe, so as to satisfy the A.B.E.. The accuracy is very good and
the numerical cost is negligible.

3We recall that μ0 is very small.
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In MANLAB, simple bifurcation points are automatically detected and
marked on the computed branch. When the user places the start point
on a bifurcation, the travelling direction is set along the second computed
tangent for switching.

2.6 Conclusion

In this section, we have presented the minimal theoretical background for
understanding continuation and bifurcation analysis using the asymptotic
numerical method. The particularity of this approach is to compute high
order Taylor series of the solution branches and to use them at best. Some
informations have been given on MANLAB and DIAMANLAB open source
softwares which implement the method. We will now go back to the periodic
solution computation by the so-called Harmonic Balance Method.

3 High order harmonic balance method

Let us take an autonomous system of differential equations

Ẏ = f(Y, λ) (31)

where Y is a vector of unknowns, f a smooth nonlinear vector valued func-
tion and λ a real parameter. We assume that this system has branches of
periodic solutions when λ varies, and we want to find and follow them by
applying the harmonic balance method and the ANM continuation proce-
dure.

3.1 The harmonic balance principle

As recalled in the introduction, the HBM relies in decomposing Y (t) into
a truncated Fourier series :

Y (t) = Y0 +
H∑

k=1

Yc,k cos(kωt) +
H∑

k=1

Ys,k sin(kωt) (32)

This ansatz is put into Eq. (31) and f(Y, λ) is expanded into Fourier series.
By balancing the first 2H + 1 harmonic terms, one obtains an algebraic
system with 2H + 1 vector equations for the 2H + 1 vector unknowns Yi,
the unknown pulsation ω, and the parameter λ. Adding a phase condi-
tion (Seydel (1994)) yields a system with N equations and N +1 variables.
The branches of solutions of this algebraic system are then followed using
a continuation technique. This procedure provides only approximate peri-
odic solutions, since in the expansion of Eq. (31), all the harmonic terms
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greater than H remain unbalanced. However, if the number of harmonics
H is large enough, accurate solutions can be obtained. We note that the
name “harmonic balance” seems to have first appeared in 1936 Krylov and
Bogoliubov (1947) and the first convergence results are attributed to Urabe
(1965). Today, HBM is still under progress, see Krack et al. (2013); Grolet
and Thouverez (2012); Guskov et al. (2008) among others, and the method
is also being adapted for Computational Fluid Mechanics Ekici et al. (2008).

One crucial point in the HBM is the expansion of the vector f(Y, λ) into
Fourier series. This can be quite a straighforward procedure if f(Y, λ) is
a polynomial of degree two or three, and if the number of harmonics H is
sufficiently small. In this case, the expansion can be carried out by hand.
But in the most general situation, where f(Y, λ) shows nonlinearities of
any kind, this computation can be very cumbersome, even with the help
of a symbolic software program. This drawback has been the starting-
point in the developpment of many revisited HBM in the literature such
as the incremental harmonic balance by Lau and Cheung (1981) and the
alternating frequency/time domain harmonic balance by Ling (1987).

Hereafter, we shall follow a simple but powerful procedure that over-
comes the drawback mentioned above: with the same spirit as for the ANM
continuation, we shall first recast the original system (31) into a new system
where the nonlinearities are polynomial and quadratic.

3.2 A key point: the quadratic recast

The quadratic system replacing (31) will be written as follows

m(Ż) = c+ l(Z) + q(Z,Z) (33)

and it will contain both differential and algebraic equations. The unknown
vector Z (of size Ne) contains the original components of the vector Y and
some new variables which are added to get the quadratic form. The right
hand side of (33) is written as follows: c is a constant vector with respect
to the unknown Z, l(.) is a linear vector valued operator with respect to
the vector entry, and q(., .) is a quadratic vector valued operator, which
is linear with respect to both entries. We assume that only the vectors c,
and l(.) depend on the real parameter λ. On the left hand side, m(.) is a
linear vector valued operator with respect to the vector entry. The algebraic
equations correspond to zero values of m(.).

Since the nonlinearities are quadratic, the HBM can obviously be easily
and systematically applied on Eq. (33), even with a large number of har-
monics. The question of how a system can be recasted into the form (33)
will be again illustrated with some elementary examples where the trans-
formation from (31) to (33) will be performed explicitly. We will deal first
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with the classical Van der Pol oscillator, the Rössler system and a model
for clarinet-like musical instruments. Other examples, with nonlinearities
of others kinds such as rational fraction, will be given later on.

Example 1: The Van der Pol oscillator. We take the following second
order autonomous system, known as the Van der Pol oscillator, where the
parameter λ governs the amplitude of the nonlinear damping term.

ü− λ(1 − u2) u̇+ u = 0 (34)

This equation can be classically recast into a first order system by intro-
ducing the velocity v(t) = u̇(t) as a new unknown. We obtain

u̇ = v

v̇ = λ(1− u2) v − u
(35)

If we now introduce the auxiliary variables w(t) = 1 − u2(t) and r(t) =
v(t)w(t), the system can be written in the form of Eq. (33) with Z =
[u, v, w, r]t. The various terms are arranged below so that it will be clear to
the readers how the different functions m, c, l and q are formed.

u̇ = 0 +v

v̇ = 0 −u+ λr

0 = 1 −w −u2

0︸︷︷︸
m(Ż)

= 0︸ ︷︷ ︸
c

+r︸ ︷︷ ︸
l(Z,λ)

−vw︸ ︷︷ ︸
q(Z,Z)

(36)

We finally obtain two first order differential equations and two algebraic
equations with quadratic polynomial nonlinearities. Only the operator l

depends here on λ.

Example 2: The Rössler system. We take the following first order
autonomous system of three equations known as the Rössler system.

ẋ = −y − z

ẏ = x+ ay

ż = b+ z(x− λ)
(37)

where x, y, z are functions of time and a, b, c are parameters. This system
can be written in the form of Eq. (33) without any auxiliary variables (i.e.
Z = [x, y, z]t):

ẋ = 0 −y − z

ẏ = 0 +x+ ay

ż︸︷︷︸
m(Ż)

= b︸ ︷︷ ︸
c

−λz︸ ︷︷ ︸
l(Z,λ)

+zx︸ ︷︷ ︸
q(Z,Z)

(38)
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Here again, only the operator l depends on λ. This example will be used
here to show that the approach presented in this paper can be used to find
period-doubling and bifurcations with period 4.

Example 3: A model for clarinet-like musical instruments. In the case
of small amplitude oscillations, a simple model for reed instruments (clar-
inet, saxophone, etc) can be written using a modal formulation as in Silva
et al. (2008); Karkar et al. (2012):

ẍ+ qrωrẋ+ ω2
rx = ω2

rp

p̈n + 2αnc ṗn + ω2
npn = 2c

l
u̇ ∀n ∈ [1 . . .N ]

u = ζ(1 − λ+ x)
√
λ− p

p =
∑N

n=1 pn

(39)

where the unknowns x, pn=1..N , p, u are functions of time and qr, ωr, αn,
ωn, c, l, ζ are given parameters describing either the physics or the player’s
action. N is the number of acoustic modes. λ stands here for the blowing
pressure.

It is worth noting that even if this system contains a square root, it can
be recast in the form of Eq. (33): if we introduce the auxiliary variables
y = ẋ, zn = ṗn and v =

√
λ− p, system (39) can be rewritten, with

Z = [x, y, p1, . . . , pN , z1 . . . zN , u, v]t as follows:

ẋ = 0 +y

ẏ = 0 +ω2
r
p− qrωry − ω2

r
x

ṗn = 0 +zn ∀n ∈ [1 . . .N ]
żn − 2c

l
u̇ = 0 −2αnc zn − ω2

npn ∀n ∈ [1 . . .N ]
0 = 0 −u+ ζ(1− λ)v +ζxv

0 = 0 −p+ p1 + · · ·+ pN
0︸ ︷︷ ︸

m(Ż)

= λ︸ ︷︷ ︸
c(λ)

−p︸ ︷︷ ︸
l(Z,λ)

−v2︸ ︷︷ ︸
q(Z,Z)

(40)
Here, the linear term l, but also the constant term c, are functions of λ.

3.3 The harmonic balance method applied to a quadratic system

In this section, the harmonic balance method is applied to the system
(33). The unknown (column) vector Z is decomposed into Fourier series
with H harmonics:

Z(t) = Z0 +

H∑
k=1

Zc,k cos(kωt) +

H∑
k=1

Zs,k sin(kωt) (41)
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The components of the Fourier series are collected into a large (column)
vector U , with size (2H + 1)×Ne, where Ne is the number of equations in
(33).

U = [Zt

0, Z
t

c,1, Z
t

s,1, Z
t

c,2, Z
t

s,2, . . . , Z
t

c,H
, Zt

s,H
]t (42)

By introducing the expansion (41) into the set of Eqs. (33), collecting
the terms of the same harmonic index, and neglecting the higher order
harmonics, one obtains a large system of (2H + 1) × Ne equations for the
unknown vector U ,

ωM(U) = C + L(U) +Q(U,U) (43)

The new operators M(.), C, L(.), and Q(., .) that apply to U depend only
on the operators m(.), c, l(.) and q(., .) of Eq. (33) and on the number
of harmonics H . We refer to Cochelin and Vergez (2009) for the explicit
formulas giving M(.), L(.) and Q(., .) as functions of m(.), c, l(.) and q(., .).
The final system (43) contains (2H+1)×Ne equations for the (2H+1)×Ne

unknowns U plus the angular frequency ω and the continuation parameter
λ. Since the original system (31) is autonomous, a phase condition has
to be added to Eq. (43) to define a unique orbit. Indeed, the time t

does not appear in Eq. (33) and if U(t) is a solution of Eq. (43) then
U(t + τ) is also a solution, for any τ . We refer here to textbooks dealing
with periodic solution continuation (Seydel (1994); Doedel (2007); Nayfeh
and Balachandran (1995)) for the choice of the phase condition. Zs,1 = 0 is
a frequently encountered additional phase condition, for example.

In the three examples presented here, we have organised the terms of
equations so that the parameter λ only appears in the operators c and l.
In addition, we have managed to make this dependence linear. Once again,
this formulation is not limited to the three examples presented here, but
it can be obtained for a very large class of dynamical systems provided
suitable additional variables are introduced. We recall that the parameter
λ should not appear in the operator q, for which the HBM algebra is the
more complex. For example, if there is a term λu2 in Eq. (33), it should be
rewritten as λv with the auxiliary variable v = u2, and put into l instead of
q.

In what follows, it is therefore assumed that c and l can be written:

c = c0 + λc1
l(.) = l0(.) + λl1(.)

(44)

where c0, c1, l0 and l1 are independent of λ. Under this assumption, the
operators C and L simply become

C = C0 + λC1

L(.) = L0(.) + λL1(.)
(45)
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and the final algebraic system becomes

R(U) = L0 + L(U) + Q(U,U) (46)

with U = [U t, λ, ω]t and

L0 = C0

L(U) = L0(U) + λC1

Q(U,U) = Q(U,U) + λL1(U) − ωM(U)
(47)

In Eq. (46), L0 is a constant vector, L(.)is a linear vector valued operator
and Q(., .) is a bilinear vector valued operator.

Implementation in MANLAB The high order harmonic balance method
has been implemented in MANLAB. The user has to provide the operator
m(.), c0, c1, l(.) l1(.) and q(., .) and the number of harmonics. The functions
L0, L and Q, which are the actual input for the continuation are generated
automatically. The examples presented in this paper are available online
(Manlab (2012)).

3.4 The case of a periodically forced system

We now focus on periodically forced (non-autonomous) systems:

Ẏ = f(t, Y, λ) (48)

where f is periodic in t, with the period T (forcing period). We look for
periodic solutions (responses) with a period pT or T

p
, where p is an integer.

Here, the periodic forcing term should be also expanded into harmonics and
resulting term should be taken into account in the balance of each harmonic.
The approach is illustrated below with two further examples.

Example 4: Forced Duffing oscillator.

ü+ 2μu̇+ u+ u3 = f cos(λt) (49)

We take the damping coefficient μ and the force amplitude f constant, and
use the forcing angular frequency as the varying parameter λ. By using
v(t) = u̇(t) and w(t) = u2(t), this equation can be recast as follows

u̇ = v

v̇ = f cos(λt) −2μv − u −uw
0︸︷︷︸

m(Ż)

= 0︸ ︷︷ ︸
c(t,λ)

w︸ ︷︷ ︸
l(Z)

−uu︸ ︷︷ ︸
q(Z,Z)

(50)
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where Z = [u, v, w]t, and the forcing term is deliberately put into c. The
forcing frequency is now related to the response frequency by putting λ = ω

or possibly, λ = pω (p is an integer). The term c(t) is then expanded into
harmonics with respect to ω.

This results in slight changes in the procedure:

• because of the synchronization of the response and the forcing, the
phase condition has to be removed. Note that the parameter λ is
no longer an unknown, since it was chosen as a multiple of ω. In
comparison with the case of an autonomous system, both the number
of equations and the number of unknowns have decreased by one.

• in the final system (46)(47), the operators C1 and L1 disappear and
the forcing amplitude f has to be accounted for in L0.

Lastly, we take the Raylegh-Plesset equation used to model large am-
plitude vibrations of gas bubbles in fluids. The forcing is handled slightly
differently and this example also shows how to cope with a minus three
power.

Example 5: The forced Rayleigh-Plesset equation (Plesset (1949)).
Let R be the radius of the vibrating bubble, and R0 the radius at rest.

The equation of motion of the bubble is

RR̈+
3

2
Ṙ2 = A{(R0

R
)3 − 1}+B cos(λt) (51)

where A and B are fixed. We introduce the normalized radius u = R

R0

and

the (normalized) velocity v = Ṙ

R0

. Dividing Eq (51) by R2
0 and defining

a = A

R2

0

, b = B

R2

0

, we get the first order system

u̇ = v

uv̇ = a(u−3 − 1)− 3
2v

2 + b cos(λt)
(52)

We now introduce the following auxiliary variables x = 1
u
, y = x2, and

z = v2, and get

u̇ = v

v̇ = a(y2 − x)− 3
2xz + bx cos(λt)

(53)

After undergoing this transformation, the system is quadratic but the forc-
ing term has now been multiplied by the unknown function x, and it is no
longer a constant term with respect to the unknown. We introduce another
auxilliary variable r(t) = cos(λt), and replace the term bx cos(λt) by bxr.
Finally, we obtain the following system, where the first two equations stand
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for (53) and the last four equations define the auxilliary variables.

u̇ = 0 + v +
v̇ = 0 + (−ax) + ay2 − 3

2xz + bxr

0 = 1 + 0 + (−ux)
0 = 0 + y + (−xx)
0 = 0 + z + (−vv)
0︸︷︷︸

m(Ż)

= − cos(λt)︸ ︷︷ ︸
c(t)

+ r︸ ︷︷ ︸
l(Z)

+ ︸ ︷︷ ︸
q(Z,Z)

(54)
Here the unknown vector is Z = [u, v, x, y, z, r]t, and the forcing term is
clearly present in the operator c.

3.5 The case of conservative nonlinear normal modes

The toy models that we have used above belong to the class of general
dissipative systems for which periodic orbits are generically isolated. The
limit cycle attractor of the Van der Pol oscillator is an example of such
isolated periodic orbit. In such systems, the control parameter lambda

appears explicitely in the equation.
The situation is quite different for conservative system, i.e., systems

having a first integral. We restrict here the discussion to mechanical systems
having an integral correponding to the conservation of the total energy. For
example, the undamped free Duffing oscillator

ü+ u+ u3 = 0 (55)

for which there is conservation of E = 1
2 u̇

2+ 1
2u

2+ 1
4u

4. In these systems, pe-
riodic orbits belong to one-dimensional 4 families that can be parametrized
by the values of the first integral, here the value of the energy E. The
difference is that the continuation parameter is not explicitely available in
the equations and this causes the numerical framework presented above to
fail. The solution to this problem has been given by Sepulchre and MacKay
(1997) and extended by Munoz-Almaraz et al. (2003) for general conserva-
tive system. The key idea is to embed the conservative system into a more
general system by adding a one-parameter dissipative term in such a way
that periodic orbits can exist only for zero values of the parameter. There-
fore, the dissipative and the conservative systems have the same periodic
orbits.

4Equation (55) has a two-dimensional family of a periodic orbits, but (55) with a phase

condition has a one-dimensional family of periodic orbits
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For mechanical system having total energy conservation, one can simply
add a linear disspation multiplied by λ. For instance,

ü+ λu̇+ u+ u3 = 0 (56)

for the Duffing example. It is obvious that because the energy is monotonic,
here increasing if λ < 0 and decreasing if λ > 0, a periodic solution can
exist only if λ = 0. A periodic solution of (56) with λ = 0 is also a periodic
orbit for (55). The advantage of (56) over (55) is that the continuation
parameter is explicit and the system can be treated numerically with the
same methodology as for the five examples presented above. Notice that
during the continuation, the control parameter λ remains equal to zero.

NNMs of a two d.o.f. spring-mass example Let us consider the two
d.o.f. spring mass system already used by Cyril Touze in this book.

x1

x2

u1

u2

k1
k2 l0

l0
l1

l2

m

Figure 8. A two d.o.f. spring mass system

Let u1(t) and u2(t) be the (dimensionless) displacements, e1 = u1 +
1/2(u2

1+ u2
2) and e2 = u2 +1/2(u2

1+ u2
2) the Green-Lagrange strain, k1 and

k2 the spring stiffnesses, W = 1/2k1e
2
1 + 1/2k2e

2
2 the strain energy and m

the mass. The equation of motion reads

mü1 + k1e1(1 + u1) + k2e2(u1) = 0
mü2 + k1e1(u2) + k2e2(1 + u2) = 0,

(57)

and the final system which is ready for applying the method (first order,
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quadratic, explicit λ) is

u̇1 = v1
u̇2 = v2
mv̇1 = −λv1 − k1e1 −u1(k1e1 + k2e2)
mv̇2 = −λv2 − k2e2 −u2(k1e1 + k2e2)
0 = e1 − u1 −1/2(u2

1 + u2
2)

0 = e2 − u2 −1/2(u2
1 + u2

2).

(58)

NNMs of elastic structure Large amplitute vibrations of elastic struc-
tures can be modelized using nonlinear elasticity theory with a finite element
discretization. This mainly concerns thin structures made of beams, plates,
shells and trusses which undergo large displacements but small strains and
small stresses. One speaks of geometrically nonlinear elastic problem. Let
U be the vector of nodal displacement,V the velocity, S the vector of the
second Piola-Kirchhoff stress component at each Gauss point, the prob-
lem can be easily formulated so as to be treated by the numerical methods
presented above

U̇ = V

MV̇ = − ∫
Ω
(BL +BNL(U))tSdv − λV

S = D(BL + 1
2BNL(U))U

(59)

where M is the mass matrix, D is the Hooke operator, BL and BNL are
the linear and nonlinear strain-displacement operators, see Crisfield (1991)
for instance. Under this form, the governing equations consist in a group of
first order quadratic differential equations (velocity definition, equations of
motion) and a group of algebraic quadratic equations (constitutive law at
finite element’s Gauss point).

3.6 Stability

Once a periodic solution has been computed, its stability can be analyzed
by using any classical method described in text-book, for instance in Nayfeh
and Balachandran (1995); Seydel (1994), and we do not enter into details
for the sake of brevity of the presentation. However, a purely harmonic-
based stability analysis has been developped by A. Lazarus and O. Thomas
as an ideal companion to the purely harmonic based method presented in
this chapter. The method is described in Lazarus and Thomas (2010) and
it has been implemented in the Manlab software by these authors.
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3.7 Numerical results on selected examples

In the following, the numerical results obtained using HBM and ANM
are either compared with time domain simulations or used to illustrate
particular features: the influence of the number of harmonics or the ability
to deal with bifurcation for instance.

Example 1: The Van der Pol oscillator.

Numerical results obtained on the Van der Pol oscillator (34) are pre-
sented in figure 9 for H = 10 harmonics and in figure 10 for H = 50
harmonics.

0 1 2 3 4 5 6 7 8 9
2.5

2

1.5

1

0.5

0

0.5

1

1.5

2

2.5

One period of the unknown u in the time domain

time (s)

u

2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5
6

4

2

0

2

4

6

Attractor in the phase space (u,v)

u

v
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Solution with 10 harmonics
Solution from time domain ODE solver

(a)

Figure 9. The Van der Pol oscillator: harmonic balance results with 10
harmonic compared to time domain simulation.

Good agreement is obtained with the results of a time domain simula-
tion, performed using Matlab ODE solvers. As expected, the number of
harmonics H in the solution sought by the harmonic balance method had
to be adapted to span the bandwith of the solution obtained by direct inte-
gration. We can see that for λ = 3, the value for this test, a relatively high
number of harmonics H is required to match the reference solution.

Example 2: The Rössler system.

The ability to follow period-doubling bifurcations is illustrated in figure
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Figure 10. The Van der Pol oscillator: harmonic balance results with 50
harmonics compared to time domain simulation.

11. The strategy used here therefore consists in introducing subharmonic
amplitudes as additional unknowns, i.e., the fundamental oscillation is not
on the first harmonic. To detect K period-doubling bifurcations, the solu-
tion is then sought as:

Z(t) = Z0 +

H∑
k=1

Zc,k cos(
k

2K
ωt) +

H∑
k=1

Zs,k sin(
k

2K
ωt) (60)

When the solution belongs to the T -periodic solution branch, Zc,k|k=1..K−1 =
0 and Zs,k|k=1..K−1 = 0. When the solution belongs to the 2T -periodic solu-
tion branch, Zc,k|k=1..K−1,k �=2K−1 = 0 and Zs,k|k=1..K−1,k �=2K−1 = 0. One
practical consequence in terms of the computational cost is that in order to
span the same bandwidth, the number of harmonics has to be mulitplied by
2K . This case is illustrated in figure 11 where H = 10 from the T -periodic
solution to H = 22 × 10 = 40 after two period-doubling bifurcations.These
figure show the ability of the method to follow the sub-harmonic cascade
from (a) λ = 2.5 (period T ), to (b) λ = 3.5 (period 2T ) and (c) λ = 4
(period 4T ).
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Figure 11. The Rössler system (Eq. (37) with a = b = 0.2): Comparison
between harmonic balance method and time domain simulation.
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Example 3: The clarinet model.

The following results are due to Sami Karkar Karkar (2012). Various pe-
riodic regimes of a clarinet musical instrument model have been computed
by using and developping the MANLAB software. The bifurcation param-
eter is here the blowing pressure inside the mouth of the player normalized
by the pressure for which the flow is zero. Figure 12 shows the stationary
solution of the model with the position of the Hopf bifurcations.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

H
H
H H

H
B*

γ

u

Figure 12. Stationary solution: flow u through the clarinet versus the
(dimensionless) blowing pressure γ. Thick line: stable stationary solution.
Dot line: unstable stationary solution. Mark H : Hopf bifurcations .

The branch of periodic solutions emerging from the first hopf bifurcation
is presented in figure 13 . Various characteristics of the clarinet instrument
are retrieved :
• for γ = 0.505, the reed begins to impact the mouthpiece during the
period. This results in a change of the slope in the diagram.

• the saturation threshold is obtained for γ = 1.742 (maximal energy
pressure inside the mouthpiece).

• the sound cut-off occurs here for γ = 1.914
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Figure 13. Branch of periodic solution emerging from the first Hopf bi-
furcation (25 Harmonics). Total pressure value at the end of the resonator
versus the blowing pressure γ (blue : rms value, red : max value)
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Figure 14. Time serie for the pressure at the end of the resonator p(t), the
flow u(t), and the motion of the reed x(t). Periodic solution for γ = 1 with
25 harmonics.
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Example 5: Forced Rayleigh-Plesset equation

The softening effect of the Rayleigh-Plesset bubble model is illustrated in
figure 15 showing the backbone curve of forced response. Convergence with
respect to harmonic number is highlighted by using from 2 to 6 harmonics.
We refer to Pauzin et al. (2011) for a detailed analysis of the model and
results.
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Figure 15. Rayleigh Plesset bubble model: amplitude of the first harmonics
versus forcing frequency Ω .

Example 6: NNMs of the 2 d.o.f. spring mass system

Figure 16 shows a bifurcation diagram and a screenshot of the MANLAB
software during the computation of NNMs for the 2 d.o.f. spring mass
system. One can recognize the Rosenberg modal line in the phase space
which looks like the ones presented by Cyril Touzé in this book. Due to
many possible subharmonic resonances and internal resonances between the
two modes, the bifurcation diagram is very elaborate. Only some branches
are shown in the figure.

More example

Other periodic solution continuation examples using Manlab can be
found in Kacem et al. (2011); Lazars et al. (2012) dealing with MEMS.
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Figure 16. (top) Screenshot of the MANLAB-1.0 software during the com-
putation of the 2 d.o.f. spring mass system NNMs; (bottom) Bifurcation
diagram: displacement u1 versus the reduced period. Branches of periodic
solution computed from the first linear mode. Eventhough the system is
simple, the diagram of periodic solutions is very elaborate due to many
bifurcations. Only some branches are represented in this diagram.
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4 Application : NNMs of elastic structures with

contactors

This section addresses the computation of NNMs for linear elastic struc-
tures having localized nonsmooth nonlinearities. Typical applications are
concerned with thin structures such as beams and plates whose vibration
amplitudes are limited by localized elastic contactors.

As compared to the other models used in this presentation, the challenge
is here that the nonlinearity is nonsmooth. Another difficulty is that the
finite element model for the elactic structure may be of a large size. An
improved version of the HBM+ANM for large size systems with localized
nonsmooth nonlinearities has been developped in Moussi (2013).

• the nonsmooth contact law are regularized and written under quadratic
polynomial form.

• the computing time is greatly optimized. For instance, an FFT/FFT−1

process is used for reporting heavy frequency computation in the time
domain where these computations are much faster.

• a different harmonic truncature is used for the displacement (rather
smooth) and for the nonlinear forces (not smooth). This permits to
significantly reduce the size of the algebraic system provided by the
HBM.

Notice that for systems having a small number of nonlinear equations
and a large number of linear equations, dynamic model reduction could be
efficiently used. A general presentation of the HBM method that includes
such model redution can be found for instance in Sarrouy and Sinou (2011).
No reduction has not been considered in the following.

4.1 NNMS of a bar with an unilateral contactor

We consider an elastic bar which is clamped at one end and restrained
at the other end by an unilateral contactor made of a linear spring and a
gap.

Figure 17. Clamped-free bar with an unilateral contactor at one end.
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The governing equations for the axial displacement u(x, t) are

ρA
∂2u

∂t2
(x, t)− EA

∂2u

∂x2
(x, t) = 0 x ∈]0, L[

u(0, t) = 0

EA
∂u

∂x
(L, t) = −f(t)

(61)

where ρ is the density , E is the Young modulus and A the cross section
area. The end x = L of the bar is limited by an elastic contactor with a
gap g and a stiffness α. This contactor applies a piecewise linear force on
the beam −f(t) given by{

f(t) = 0 if u(L, t) < g

f(t) = α(u(L, t)− g) if u(L, t) > g.
(62)

In order to apply HBM and ANM methods, the piecewise linear contact
law has to be regularized. We assume that f(t) and u(L, t) are related by
the polynomial and quadratic expression

f(t)(f(t)− α(u(L, t)− g)) = αη (63)

where η is a small parameter. For η = 0, the solution to (63) is either f = 0
or f = α(u − g). For η very small, (63) has two solutions, one of which is
very closed to ”exact” law (62) and the other one being non physical.

fff

uuu

(a) (b) (c)

Figure 18. Contact law of the elastic contactor: (a) exact law. (b) solution
of (63) with η = 0. (c) solution of (63) with η > 0 and small.

Classical 2 d.o.f. finite elements with linear displacements are used for
the spatial discretization

Me =
ρAle

6

(
2 1
1 2

)
et Ke =

EA

le

(
1 −1
−1 1

)
, le =

L

n
(64)
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The final system to be treated by HBM and ANM method is⎧⎨
⎩ 0 = MÜ(t) + λU̇(t) +KU(t) +

(
0

f(t)

)
0 = f(t)(f(t)− α(UL(t)− g))− αη

(65)

In the following, we use ρ = 7800 kg/m3, E = 2.1 × 1011 Pa, L = 1 m,
A = 0.032 m2 , g = 10−4 m, α = 8107 N/m, η = 2.510−7 . The first three
linear frequencies of the beam are then f1 = 1297.5 Hz , f2 = 3900.6 Hz
and f3 = 6527.7 Hz.

4.2 First nonlinear mode
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Figure 19. Frequency-energy plot of the first NNM for the bar with an
elastic end stop. Number of harmonics Hu = 11 for the dsiplacement.

The frequency-energy plot of the first NNM is presented in figure 19
using 11 harmonics for the displacement and 151 harmonics for the force.
For low energy level, the bar does not enter in contact with the contactor
and the NNM looks like the first linear mode with a constant frequenecy and
a fixed modal shape. This corresponds to the horizontal line at f = 1297
Hz. For energy level between 1 and 100, the frequency increases from 1297
Hz to around 1370 Hz due to the stiffening effect provided by the contactor.
One can observe, five “tongues” on the main curve which corespond to five
internal resonances 3 : 1, 5 : 1, 7 : 1, 9 : 1 and 11 : 1 respectively with the
NNMs 2, 3, 4, 5 and 6.
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Figure 20. Time serie on a period for the end displacement u(L, t) of
the bar. Periodic solution E = 144.06, f = 1338.3 correpond to a stable
solution on the 11:1 tongue. HBM+ANM solution (in black) compared to
time integration solution (in red).

The HBM solution with 11 harmonics for the displacement is compared
to a reference solution (time integration) on figure 20 showing a very good
agreement.

Finally, the frequency-energy plot obtained by using only 1 or 3 or 7 har-
monics instead of 11 for the displacement is shown on figure 21. The main
branch remains the same with almost the same asymptot. The difference
is the presence or not of the tongues corresponding to internal resonances.
For example, with 3 harmonis only the first 3:1 tongue is described, and
with 7 only the first three one 3 : 1, 5 : 1, 7 : 1.

One can see that the use of a small number of harmonics on the dis-
placement permits to limit the number of internal resonances and greatly
simplifies the frequency-energy plot.

4.3 Beam with a bilateral contactor

We consider a clamped-simply supported beam with a bilateral contactor
as shown in figure 22. This system is modeled by the following boundary
value problem:

ρA
∂2u

∂t2
(x, t) + EI

∂4u

∂x4
(x, t) + δxs

(x)fnl(u(xs, t)) = 0, ∀x ∈ [0, L], (66)
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Figure 21. Frequency-energy plot of the first NNM. Hu = 1 (top), Hu = 3
(middle) and Hu = 7 (bottom).
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u(0, t) = 0,
∂u

∂x
(0, t) = 0, u(L, t) = 0,

∂2u

∂x2
(L, t) = 0, (67)

where I denotes the moment of inertia and xs the position of the contactor.
The localized nonlinear force f is defined by⎧⎨

⎩
f(t) = α(w(xs) + g) if w(xs) < −g.
f(t) = 0 if − g < w(xs) < g

f(t) = α(w(xs)− g) if w(xs) > g.

(68)

and regularized as

f(t)(f(t)− α(w(xs) + g))(f(t) − α(w(xs)− g)) = α2ηw(xs) (69)

where η is a small parameter.

Figure 22. A clamped-simply supported beam with a bilateral contactor.

The following numerical values have been used: ρ = 8357 kg/m3, E =
2.06 × 1011 Pa, A = πr2 m2, I = π

64 × ((0.022224 − 0.001274) m4, r =
11.11× 10−3 m, L = 1.59 m, xs = 1.3515 m, α = 8× 105 N/m, g = 0.00029
m and η = 0.005.

A finite element procedure has been used to discretize (66) with 20 Her-
mite elements giving n = 40 d.o.f. with only one involving possible contact.
The NNMs have been computed with MANLAB.

The four first resonance frequencies of the clamped-simply supported
beam are f1 = 26.817 Hz, f2 = 86.907 Hz, f3 = 181.330 Hz, and f4 =
310.113 Hz. Using the associated normal modes as starting point, the four
first NNMs were computed using the following orders of truncation Hu = 11
for the d.o.f not involved in the contact and Hf = 201 for the d.o.f. involved
in the bilateral contact. The behavior of the first NNM is shown in figure
23 in terms of frequency energy plot. At low energy level, the frequency
is constant corresponding to modal motions without contact. When con-
tact occurs, the frequency increases with the energy showing four tongues
associated to four internal resonances (square markers). The first tongue
corresponds to a 11 : 1 internal resonance between the fourth and the first
NNMs. The fourth NNM is also reported (dashed curve) using the scale
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Figure 23. FEP of the first NNM (continuous line). The square markets
correspond to internal resonances.

factor 1
11 in frequency axis. For this NNM, the frequency is also constant

(= f4

11 ) at low energy level. The second tongue corresponds to a 3 : 1 inter-
nal resonance between the second and the first NNMs and so on. At high
energy level, the frequency of the first NNM increases up to a resonance
frequency of the linear system associated to a nul gap (g = 0).

4.4 Conclusion

The two academic examples described in this section show that the com-
bination of HBM and ANM is operant for the computation of NNMs of
elastic structures having localized nonsmooth nonlinearities, provided that
the contact law are regularized. This result is not evident since the use
of a Fourier serie is probably not the best way to represent a nonsmooth
function, eventhough it is regularized. However, as it was already claimed
in Karkar et al. (2013), the continuation is robust provided that a large
number of harmonic is used, up to 1000 for instance in Karkar et al. (2013).

The vibro-impact of the U-tube of nuclear power plant steam generator
is adressed in Moussi (2013) with the same methodoly as for the bar and the
beam example. The stiffness of contactor is set to high values to modelize
the impact between the tube and the supporting plate. Accordingly, a high
number of harmonics is used to capture the nonsmooth response due to
impact. The computation of the NNMs with the internal resonance tongues
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explain particular vibrating regimes which are in line with experimental
results conducted by EdF R&D compagny. These regimes are of course not
predicted by the linear theory.

This last industrial experience confirms, if needed, that the definition
and the calculation of NNM is not only an academic topic for researchers,
but it becomes progressively an effective tool to describe and explain the
behaviour of practical applications.
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1 Introduction

Linear modal analysis in the time and frequency domains is well established.
Yet, as mechanical systems become increasingly more complex, incorporat-
ing electromechanical components or biological and biomimetic elements,
the likelihood exists that their dynamics will be strongly nonlinear and
nonstationary. Examples of sources of strong nonlinearity, some of which
are realized even for small amplitudes of vibration) include local buckling,
plastic deformations, clearance and backlash, hysteresis, friction-induced
oscillations, and vibro-impact motions. Such effects cannot be accurately
addressed by linear modal analysis, since standard techniques, such as the
classical FT, and well-established concepts such as normal mode, natural
frequency, and modal space cannot be applied to the identification of non-
linear and nonstationary dynamic regimes.

In this section we discuss the basic elements of a nonlinear system identi-
fication (NSI) methodology with promise of broad applicability that has the
potential to overcome such limitations of linear modal analysis. Ideally, such
an NSI methodology would be as utilitarian as experimental linear modal
analysis, and would be applicable to a broad class of nonlinear systems.
Moreover, desirable attributes of this methodology would be to be,
• applicable to direct analysis of measured time series
• based on a solid physics-based, theoretical foundation
• able to identify complex nonlinear resonance interactions, and provide
interpretation and modeling of such interactions

• able to address the dependence of the nonlinear dynamics on energy,
type of excitation, and, perhaps, more important, initial conditions

• considered as natural extension of classical linear modal analysis, ex-
tending, if possible well-established linear concepts to the nonlinear
regime.

G. Kerschen (Ed.), Modal Analysis of Nonlinear Mechanical Systems, CISM International 
Centre for Mechanical Sciences DOI 10.1007/ 978-3-7091-1791-0_7 © CISM Udine 2014
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This is a very demanding list, indeed, given the highly individualistic
nature of nonlinear dynamical systems which restricts the unifying dynam-
ical features that are amenable to system identification. This is further
highlighted by the fact that existing NSI methods (1) are either applicable
to relatively simple systems (e.g., one or two-DOF), or are computationally
intensive and, hence, difficult to implement in practical settings. Moreover,
no general methods exist for systems with non-smooth nonlinearities (e.g.,
clearances and dry friction) or with strong nonlinearities (e.g., ultra-flexible
wings where geometric nonlinearities are prominent).

The proposed NSI methodology can potentially address these challenges.
After reviewing the basic analytical, computational and post-processing
components of the proposed NSI methodology, and its local and global
aspects we provide some examples of applications to nonlinear mechanical
systems.

2 Slow flows and empirical mode decomposition

The basic elements of the NSI methodology have been presented elsewhere
(2; 3; 4; 5; 6; 7; 8; 9), so here we provide only a brief overview of its most
important components and refer the reader to these references for more
technical details. The methodology adopts an integrated global / local ap-
proach to NSI, whereby global features of the dynamics are identified in the
frequency-energy domain by constructing frequency-energy plots (FEPs) di-
rectly from measured data, while local features are identified by construct-
ing appropriate local slow-flow models. An advantage of the methodology is
based on direct analysis of measured time series which contain complete in-
formation of the nonlinear dynamics to be identified, and holds promise for
broad applicability to a wide range of dynamical systems, including systems
with strong or even non-smooth nonlinearities, as well as systems with time-
varying properties. The basic elements of the methodology consists of, (i)
analytical constructions of slow flow models, (ii) numerical empirical mode
decompositions combined with Hilbert transforms, (iii) correspondence be-
tween the analytical and numerical parts, (iv) FEP reconstructions (global
aspect of NSI), and (v) time series reconstructions (local aspect of NSI).

A slow-flow model of the dynamics of an oscillating system captures
its essential (important) dynamics, after the non-essential (fast) dynamics
is averaged out. This is performed by slow/fast partitions of measured
time series. We consider a general n-degree-of-freedom (DOF) nonlinear
dynamical system,

Ẋ = f(X, t), X = {xT ẋT }T ∈ R2n, t ∈ R (1)
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where x is an n-response and f is an 2n-vector function (underlines de-
note vectors), and apply the complexification-averaging (CX-A) technique
first introduced in (10) under the central assumption that the measured
time series are in the form of modulated oscillatory signals. Assuming that
the dynamics possesses N distinct components at well-separated frequen-
cies ω1, ..., ωn (which will be labeled fast frequencies) the response of each
DOF of the system can be expressed as a summation of N independent
components,

xk(t) = x
(1)
k

(t) + ...+ x
(N)
k

(t), k = 1, ..., n (2)

where x
(m)
k

(t) indicates the response of the k− th coordinate of (1), associ-
ated with the fast frequency ωm with ω1 > ... > ωn. To each component of
(2) we assign a complex variable defined as,

Ψ
(m)
k

(t) = ẋ
(m)
k

(t) + jωmx
(m)
k

(t) = φ
(m)
k

(t)︸ ︷︷ ︸
Slow component

ejωmt︸ ︷︷ ︸
Fast component

(3)

where j = (−1)1/2. A slow/fast partition of the dynamics in terms of a

slow (complex) amplitude φ
(m)
k

(t) and a fast oscillation ejωmt was assumed.
In essence the slow complex amplitudes are considered as slowly varying
modulations of the fast oscillation at frequency ωm. That such a partition
(which is by no means unique or universal) holds is a central assumption in
our methodology. Substituting (2) and (3) into (1) and performing multi-
phase averaging (11) for each of the fast frequencies we construct the slow
flow of (1) in the form,

φ̇
k
= F

k
(φ

1
, ..., φ

n
), φ

k
∈ CN (4)

where φ
k
= {φ(1)

k
, ..., φ

(N)
k
}T , k = 1, ..., n is the N -vector of complex am-

plitudes or modulations associated with the k − yh DOF of (1). Clearly,
the number of fast frequencies N determines the dimensionality of the slow
flow (4), and (in contrast to linear systems) it is not necessarily equal to
the number of degrees of freedom, n, of (1). This is due to the possibility
of higher harmonics entering in the response due to bifurcations, nonlinear
modal interactions or other nonlinear phenomena occurring in the dynamics.

The slow flow model (4) captures the slow evolution of the N harmonic
components of (1), or the essential (important) dynamics after the fast fre-
quencies (or un-important dynamics) are averaged out. We make the remark
here that the previous slow flow formulation might seem artificial, since it is
based on direct analysis of the equations of motion (1) which, in general, are
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not known in experimental NSI (in fact, the derivation of a reduced-order
model such as (1) is one of the outcomes of NSI!). This theoretical con-
struction, however, is important since it provides the theoretical foundation
for the NSI methodology. Indeed, even if the governing equations of motion
of a measured dynamical process are not known, the underlying important
dynamics is captured by a slow flow; it follows that the construction of such
a (reduced order) model directly from measured time series data through
NSI will be one of the primary tasks of the current NSI methodology. The
slow formulation provides the basic analytical element in the methodology
and it will be complemented by a numerical part which we will now briefly
discuss.

The second basic element of the NSI methodology is Empirical Mode De-
composition (EMD) combined with the numerical Hilbert Transform (HT).
EMD was conceived as a numerical post- processing technique for analyz-
ing nonstationary and nonlinear time series (12), and has been applied to
numerous applications. This decomposition method is based on identify-
ing the characteristic time scales in measured oscillatory time series in an
adaptive and highly efficient way, and is especially suitable for nonlinear
and nonstationary processes. EMD yields a complete and nearly (but not
thoroughly) orthogonal basis of intrinsic mode functions IMFs, which are
oscillatory modes embedded in the time series, each with its own charac-
teristic time scale; the linear superposition of IMFs reconstructs the mea-
sured time series. Hence, EMD is a multi-scale decomposition of a measured
time series in terms of embedded oscillatory modes at different time scales
of the dynamics. The main loop of the EMD algorithm (the sifting algo-
rithm) for extracting the IMFs from a signal x(t) is described in (12) and
(2; 3; 4; 5; 6; 7; 8; 9) (together with some extensions that improve its
effectiveness), so it will not be repeated here.

By this construction process the superposition of the K leading IMFs
reconstructs approximately the measured time series. However, due to the
ad hoc nature of the sifting algorithm, only a subset of these IMFs is phys-
ically meaningful with the rest being of spurious nature (13). As discussed
in (14; 15), however, the dominant (and physically meaningful) IMFs can
be identified by comparing their instantaneous frequencies to the wavelet
transform (WT) spectra of the original time series. The instantaneous fre-
quencies of the dominant IMFs coincide with the dominant harmonics of
the wavelet spectra. This process also identifies the dominant time scales
(or frequencies) of the dynamics in the time series. It follows that EMD
provides the following ad hoc numerical decomposition of the dynamical
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response of the k − th coordinate of the general system (1) in the form,

xk(t) = c
(1)
k

(t) + ...+ c
(N)
k

(t), k = 1, ..., n (5)

where c
(m)
k

(t) is the m− th dominant IMF of the response xk(t) , associated
with the fast frequency ωm, with ω1 > ... > ωN . We note at this point the
similarity between the numerical construction (5) and the theoretical slow
flow construction (2); this similarity is a key point in NSI methodology.

Although EMD is a powerful signal decomposition method for oscilla-
tory measured data, it has certain deficiencies. First, it may lead to spurious
(i.e., non-physically meaningful) IMFs due to the lack of orthogonality of the
IMFs; as mentioned above this is addressed by identifying a set of dominant
IMFs through the use of wavelet transforms of the experimental measured
timeseries. Second, there are concerns regarding the frequency content of
the IMFs, since in order to obtain meaningful results when applying HT
to the IMFs, it is necessary that these are mono-component or, at least,
narrowband (otherwise we obtain mixed-mode IMFs in the form of beat
phenomena with closely spaced frequencies). Related to this, there are is-
sues concerning the uniqueness of the EMD results; EMD does not result in
a unique decomposition of a measured time series since it is applied in an ad
hoc manner and depends on a free stopping parameter; that is, EMD is not
robust in practice. The set of extracted IMFs can be considered as a basis
for reconstructing the original measured time series if it satisfies (or nearly
satisfies) the basic conditions of completeness and orthogonality. By virtue
of the EMD algorithm, completeness of the IMFs is guaranteed by construc-
tion. It is the lack of orthogonality between IMFs, however, that generates
spurious features in the results and prevents uniqueness of the decompo-
sition. These issues have been addressed in (2; 3; 4; 5) through the use
of masking and mirror-image signals that lead to well-decomposed, nearly
orthogonal sets of IMFs. A final issue concerns the ad hoc nature of EMD
and the lack of a theoretical foundation for the derived near-orthogonal
basis of the IMFs of the decomposed time series. This very issue is ad-
dressed by reconciling the analytical and numerical decompositions (2) and
(5), respectively. This is discussed below.

The matching of the slow flow decomposition and EMD is performed by
shifting the analysis to the complex plane. For the slow flow construction
this was already performed through the definition (3). A similar complexi-
fication for the IMFs defined in (5) can be performed by numerical Hilbert
transform. The Hilbert transform (HT) h(t) of a (mono-component) signal
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y(t) is defined as

h(t) ≡ H [y(t)] =
PV

π

∫
∞

−∞

y(s)

t− s
ds (6)

where PV stands for Cauchy principal value. Moreover, a basis result in
complex analysis states that a complex function whose imaginary part is
the Hilbert transform of its real part is analytic. Motivated by this result

we proceed complexify the m − th IMF c
(m)
k

(t) of the time series xk(t) in
(5) by defining the analytic complex function,

Ψ̂
(m)
k

(t) ≡ c
(m)
k

(t) + jH [c
(m)
k

(t)] (7)

Then we can compute the instantaneous amplitude and phase of the m− th

IMF as,

Â
(m)
k

(t) = {c(m)2

k
(t)+H [c

(m)
k

(t)]2}1/2, tan θ̂(m)
k

(t) = H [c
(m)
k

(t)]/c
(m)
k

(t) (8)

and its instantaneous frequency as ω̂
(m)
k

(t) =
˙̂
θ
(m)
k

(t). This leads to the slow-
fast representation of the complexified IMF (7) in a form which is similar
to the analytical slow flow decomposition (3):

Ψ̂
(m)
k

(t) ≡ Â
(m)
k

(t)ejθ̂
(m)

k
(t) = Â

(m)
k

(t) ej[θ̂
(m)

k
(t)−ω

(m)

k
t]︸ ︷︷ ︸

Slow component

ejω
(m)

k
t︸ ︷︷ ︸

Fast component

(9)

Hence, complexifying the IMFs provides a way to relate the EMD re-
sults to the underlying slow flow dynamics, and to physically interpret the
(previously ad hoc) dominant IMFs in terms of the underlying slow flow
dynamics. Indeed, from the previous derivations, the response of the k− th

DOF of (2) can be expressed in two different ways,

Slow flow (analytical)

xk(t) = x
(1)
k

(t) + ...+ x
(N)
k

(t), Ψ
(m)
k

(t) =

ẋ
(m)
k

(t) + jωmx
(m)
k

(t) ≡ φ
(m)
k

(t)︸ ︷︷ ︸
Slow component

ejωmt︸ ︷︷ ︸
Fast component

(10)

EMD (numerical)

xk(t) = c
(1)
k

(t) + ...+ c
(N)
k

(t), Ψ̂
(m)
k

(t) = c
(m)
k

(t) + jH [c
(m)
k

(t)] =

Â
(m)
k

(t) ej[θ̂
(m)

k
(t)−ω

(m)

k
t]︸ ︷︷ ︸

Slow component

ejω
(m)

k
t︸ ︷︷ ︸

Fast component

(11)
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where we have expressed the complex envelope (9) in polar form as Ψ̂
(m)
k

(t) =

Â
(m)
k

(t) ejθ̂
(m)

k
(t). Given, that the time series is decomposed in terms of

dominant IMFs, it follows that ω
(m)
k

≈ ωm for m = 1, ..., N where N is
the number of dominant harmonic components in the slow flow decompo-
sition of the dynamics (i.e., the number of fast frequencies which defines
the dimensionality, or the number of significant frequency-time scales in
the dynamics). It follows that the above partitions can be directly related,
since they represent identical theoretical and numerical multi-scale slow-fast
decompositions of the measured time series,

x
(m)
k

(t)︸ ︷︷ ︸
Theoreticalmodel

→ c
(m)
k

(t)︸ ︷︷ ︸
Numericalmodel

, k = 1, ..., n, m = 1, ..., N (12)

We note that the complexification (7) based on the Hilbert Transform is
different than the corresponding complexification (3) employed in the ana-
lytical slow flow analysis, so we can consider the following alternative com-
plexification,

ˆ̂
Ψ

(m)
k

(t) = ċ
(m)
k

(t) + jωc
(m)
k

(t) ≡ ˆ̂
φ
(m)
k

(t)︸ ︷︷ ︸
Slow component

ejωmt︸ ︷︷ ︸
Fast component

=
ˆ̂
A

(m)
k

(t)ej[
ˆ̂
θ
(m)

k
(t)−ωmt]︸ ︷︷ ︸

Slow component

ejωmt︸ ︷︷ ︸
Fast component

(13)

where we introduced the polar representation
ˆ̂
Ψ

(m)
k

(t) =
ˆ̂
A

(m)
k

(t)ej
ˆ̂
θ
(m)

k
(t).

Then, simple manipulations can relate the two IMF complexifications (7)
and (13) through the relationship:

Ψ̂
(m)
k

(t) =
1

jωm

ˆ̂
Ψ

(m)
k

(t) (14)

Given the correspondence (12) the correspondence between the analytical
and numerical complexifications yields:

Ψ
(m)
k

(t)→ ˆ̂
Ψ

(m)
k

(t) = jωmΨ̂
(m)
k

(t)⇒
φ
(m)
k

(t)→ jωmÂ
(m)
k

(t)ej[θ̂
(m)

k
(t)−ωmt]︸ ︷︷ ︸

Equivalence of slow complex amplitudes

(15)

The results (15) provides a physics-based theoretical foundation for EMD,
whereby the dominant IMFs represent the underlying slow flow of the dy-
namics and, hence, capture all the important multi-scale dynamics. This
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leads us to the important conclusion that dominant IMFs extracted by means
of EMD of experimentally measured time series represent the underlying
slow flow dynamics of the measured dynamical system. This important re-
sult is central to the NSI methodology of broad applicability. Note that no
assumptions have been made regarding the type or dimensionality of the
system and the type and strength of the nonlinearity. Hence, the slow-fast
partitions discussed above and the physical interpretation of the results of
EMD should hold for a broad class of dynamical systems. We reemphasize
at this point, however, that this approach is valid for oscillatory measured
time series possessing a finite number of well separated fast frequencies (for
a discussion of how the methodology can be extended to systems with in-
ternal resonances see (16)).

As an example consider the following two-DOF strongly nonlinear system
(i.e., n=2 in terms of the previous notation), composed of a linear oscillator
(LO) coupled to a lightweight nonlinear energy sink (NES) (3):

ẍ1 + ω2
0x1 + ελ1ẋ1 + ελ2(ẋ1 − ẋ2) + C(x1 − x2)

3 = 0

εẍ2 + ελ2(ẋ2 − ẋ1) + C(x2 − x1)
3 = 0 (16)

For parameters ω0 = 1, C = 1, ε = 0.05, λ1,2 = 0.03 and initial conditions
ẋ1(0) = −0.059, ẋ2(0) = 0.015, x1(0) = x2(0) = 0, the responses are de-
picted in Figure 1, and the realization of 1:3 transient resonance capture (1:3
TRC) (17) is clear; that is, the NES oscillates with a dominant frequency
equal to (1/3) of the frequency of the LO. The corresponding dominant
IMFs of each of the two responses are depicted in Figure 1b. In terms
of the previous notation, we have the following analytical and empirical
decompositions:

x1(t) ≈ x
(1)
1 (t) ≈ c

(1)
1 (t) and x2(t) ≈ x

(1)
2 (t) + x

(2)
2 (t) ≈ c

(1)
2 (t) + c

(2)
2 (t)

(17)

The IMFs c
(1)
1 (t) and c

(1)
2 (t) are nearly monochromatic at frequency ω1 =

ω0, whereas the IMF c
(2)
2 (t) is nearly monochromatic at frequency ω2 =

ω1/3.
In Figure 2 we present the correspondence between the slow flow and

the empirical mode decomposition for the responses of system (16). The re-
sponse of the LO possesses a dominant IMF at frequency ω1 = ω0, whereas
the response of the NES possesses two IMFs are frequencies ω1 = ω0 and
ω2 = ω1/3. Good correspondence between the analytical slow flow predic-
tions and the numerical EMD results is noted for the IMFs (only the second
IMF of the response of the NES is considered in Fig. 2 as it is the dominant
one).
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3 Frequency-energy plots, wavelet transforms and

damped transitions

Given the dependence of the responses of nonlinear dynamical systems on
energy (e.g., initial conditions or forcing level), it is necessary to study the
dynamics in the frequency energy plane. The corresponding representation
of the sets of periodic (or quasi-periodic (18)) orbits of an undamped and
unforced model of a dynamical system in that plane will be referred to as
frequency energy plot (FEP), and will provide a synoptic picture of the
underlying intrinsic nonlinear dynamics.

We will demonstrate this plot by considering the two-DOF oscillator (19;
20) composed a linear oscillator coupled to a strongly nonlinear oscillating
attachment:

ÿ + ω2
0y + λ1ẏ + λ2(ẏ − v̇) + C(y − v)3 = F (t)

εv̈ + λ2(v̇ − ẏ) + C(v − y)3 = 0 (18)

In Figure 3 we depict the FEP for this system for λ1 = λ2 = F (t) = 0,
where for a given frequency and energy a periodic orbit is represented by
a point in the plot, and a branch, represented by a solid line, is the set
of periodic orbits possessing the same qualitative features. For instance,
branch S11+ depicts a branch of periodic orbits for which the linear and
nonlinear components oscillate in a symmetric fashion and with the same
frequencies (hence the ’S’ and ’11’ designations) and in an in-phase fashion
(hence the ’+’ sign). Similarly, branch U21 depicts a branch of periodic
orbits where the oscillations of the two components of the system are un-
symmetric (hence the ’U ’ designation) and the frequency of the nonlinear
oscillator is twice that of the linear one (hence the ’21’ designation). Sym-
metric S-solutions correspond to orbits that satisfy the initial conditions,
v̇(0) = ±v̇(T/2), ẏ(0) = ±ẏ(T/2), v(0) = y(0) = 0, where T is the period of
the oscillation, whereas, unsymmetric U -solutions are periodic orbits that
fail to satisfy these conditions. Regarding the frequency designation of each
periodic orbit, we assign a frequency index equal to the ratio of its indices,
e.g., S21 is represented by the frequency index ω = 2/1 = 2. This conven-
tion rule holds for every branch except some of the branches S11±, which,
however, are particular branches, forming the basic backbones of the entire
FEP. Moreover, on the energy axis we depict the (conserved) total energy of
the system when it oscillates in the corresponding periodic motion. Transi-
tions between certain branches seem to involve ’jumps’, but this is only due
to the frequency convention adopted, and no actual discontinuities in the
dynamics occur (e.g., by the previous designations, a branch S(kn)(km), k
integer is identified with Snm).
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There is a sequence of higher- and lower-frequency periodic solutions
bifurcating or emanating from the backbone branches S11±, which are des-
ignated as subharmonic tongues. Each tongue occurs in the neighbourhood
of an internal resonance between the linear oscillator and the nonlinear
attachment, and corresponds to either symmetric (e.g., S13±) or unsym-
metric (e.g., U21±) subharmonic motion of the system. Certain periodic
orbits (termed impulsive orbits (18)] and depicted by dots in Figure 3) sat-
isfy the special initial conditions v(0) = v̇(0) = y(0) = 0 and ẏ(0) �= 0,
i.e., correspond to application of an impulse of magnitude ẏ(0) to the linear
oscillator; these orbits play an important role in targeted energy transfers
in the damped and impulsively forced system (18) (21).

The FEP is especially useful when considering damped responses of the
weakly damped responses system (18) either under transient excitations or
due to nonzero initial conditions. In particular, one can systematically inter-
pret the complex multi-frequency nonlinear transitions by relating them to
the different branches of solutions in the FEP. To show this we consider the
system parameters ω0 = 1, C = 1, ε = 0.05, λ1 = 0, λ2 = 0.0015, F (t) =
0, and numerically integrate the equations (18) subject to initial conditions
v(−T/4) = v̇(−T/4) = x(−T/4) = 0 and ẋ(−T/4) = −0.1039 (these corre-
spond to excitation of a stable impulsive orbit on the subharmonic branch
U76). In Figure 4 we depict the transient responses of the linear and non-
linear oscillator, and in Figure 5 the corresponding wavelet transform (WT)
spectra of these motions.

The WT can be viewed not only as a basis for functional representation,
but at the same time as a useful technique for time-frequency analysis. In
contrast to the Fast Fourier Transform (FFT) which assumes signal station-
arity, the WT involves a windowing technique with variable-sized regions,
by constructing a series of wavelet functions derived from a basic ’mother
wavelet’ function. Small time intervals are considered for high frequency
components whereas the size of the interval is increased for lower frequency
components, thereby giving better time and frequency resolutions than the
FFT. Different types of mother wavelets can be considered, e.g., Morlet
wavelets, which are Gaussian-windowed complex sinusoids of frequency ω0,
ΨM (t) = e−t

2
/2ejω0t, or Cauchy wavelets. These two mother wavelets pro-

vide similar results when applied to the signals considered here. The WT
spectra presented in Figure 4 depict contour plots of the amplitude of the
WT as a function of frequency (vertical axis) and time (horizontal axis).
Heavy shaded areas correspond to regions where the amplitude of the WT
is high, whereas lightly shaded regions correspond to low amplitudes. Such
plots enable one to deduce the temporal evolutions of the dominant fre-
quency components of the signals analysed.
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In Figure 6 we depict the WT spectra of the damped responses Figure
5 superimposed on the undamped FEP of Figure 3, by replacing the time
variable with the corresponding instantaneous energy at a given instant
of time. Whereas this is only a phenomenological comparison, it helps us
gaining an understanding of the different resonance dynamics that occur
in the damped transient dynamics. We make the general observation that
the highly complex nonlinear dynamics can be fully interpreted in the FEP.
Indeed, initially a stable impulsive orbit on branch U76 is excited, but
as energy decreases due to damping there occurs a transition (jump) to the
stable branch S13-, where the oscillation locks into a 1:3 transient resonance
capture with the linear oscillator possessing a harmonic component with
frequency three times higher than that of the nonlinear attachment; as
energy decreases there occurs escape from this resonance capture, and the
motion evolves along the lower frequency branches S15, S17,...

These results demonstrate that depictions of damped responses on the
FEP can be a powerful tool for interpreting highly complex, multi-frequency
nonlinear transitions. The usefulness of FEP depictions is further high-
lighted that the fact that it provides both the global synoptic picture of the
intrinsic nonlinear dynamics of (both discrete and continuous) dynamical
systems, as well as local interpretations of specific damped transitions (i.e.,
of oscillations initiated by specific forcing or initial conditions). As such, the
FEP will prove to be central in the integrated NSI methodology discussed
in the next section.

4 Global and local aspects of the NSI methodology

The NSI methodology combines the previous concepts and techniques into
an integrated scheme with local and global aspects of identification. The
central assumption of the methodology is that the measured dynamics can
be decomposed in terms of slowly modulated fast oscillations, which is a
reasonable assumption for non-chaotic measured vibration data. The basic
elements are as follows:

Under transient shock excitation (similar to hammer tests of linear modal
analysis), perform measure transient time series from a number of sensing
positions throughout the test item, and perform EMD of the measured
time series. This will lead to a set of experimentally extracted intrinsic
mode functions (IMFs) at each sensing location. By Hilbert-transforming
the IMFs we compute their instantaneous frequencies and compare them
to wavelet transform spectra of the measured time series; this determines
the dominant IMFs and the corresponding dominant fast frequencies in the
measured dynamics at each sensing location. This procedure identifies the
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basic (dominant) time scales and the dimensionality of the measured dy-
namics, and provides the foundation for the nonlinear system identification.

Based on the theoretical correspondence of the experimentally measured
dominant IMFs and the underlying intrinsic slow-flow dynamics of the sys-
tem, we relate the slow components of the dominant experimental IMFs to
the intrinsic slow flow dynamics. This is the fundamental underlying prin-
ciple of the NSI. Indeed, using the dominant IMFs we can reconstruct the
measured time series and depict them in an FEP assuming that the mass
distribution of the system is known (an assumption that is not restrictive).
Under the assumption of weak dissipation this will reconstruct a portion
of the FEP of the intrinsic dynamics of the system under investigation and
provides the global aspect of the NSI methodology. Note that no a priori
model is assumed for this FEP reconstruction, so this procedure is non-
parametric. By considering different time series we can construct the global
picture of the intrinsic dynamics of the system and gain an estimate of the
strength of the nonlinear effects in the dynamics (e.g., curved branches in
the FEP indicate strongly nonlinear dynamics, whereas horizontal branches
linear or weakly nonlinear dynamics).

In addition, by considering a specific measured damped transition we
can define a parametric reduced-order slow-flow model of the system with
the dimensionality of the dynamics, and identify its parameters, thus con-
structing a local slow flow model of the dynamics. This provides the local
parametric aspect of the NSI methodology. The so constructed slow flow
models fully reconstruct the specific measured time series. By varying the
excitation and/or the initial conditions of the system we can consider differ-
ent nonlinear transitions of the system over different frequency and energy
ranges, and construct the corresponding portions of the FEP of the system
together with the associated local slow flow models.

The final outcomes of the proposed NSI methodology are the construc-
tion an FEP of the global dynamics depicting the possible coexisting fam-
ilies of periodic solutions (nonlinear modes) over the frequency and energy
ranges of interest, and the corresponding local slow flow models of the dy-
namics describing nonlinear transitions on the FEP. Hence, the proposed
approach addresses in a systematic way a fundamental limitation of other
nonlinear system identification methods which fail to account for the fact
that the responses of nonlinear systems may depend crucially on the initial
conditions and/or the applied excitations. The added flexibility of ’prob-
ing’ the dynamics over different frequency and energy ranges in order to
extract different local models is important when identifying systems capa-
ble of strongly nonlinear dynamical behavior.
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5 Applications

As a first application we apply the local aspect of the NSI methodology to
identify the strongly nonlinear dynamical interaction of a viscously damped
dispersive finite rod on distributed elastic support, with an essentially non-
linear attachment at its right end (cf. Figure 7 (22)). The essential non-
linearity of the attachment is due to the lack of a linear component in the
stiffness connecting it to the rod, whereas the attachment is lightweight (its
mass is scaled by the small parameter 0 < ε << 1). Denoting by v(t) and
u(x, t) the responses of the nonlinear attachment and the rod, respectively,
the equations of motion are given by:

∂2u(x, t)

∂t2
+ ω2

0u(x, t) + ελ1
∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
= 0, 0 ≤ x ≤ L

u(0, t) = 0,
∂u(L, t)

∂x
= −εv̈(t)

εv̈(t) + ελ2

[
v̇(t)− ∂u(L, t)

∂t

]
+ C [v(t) − u(L, t)]3 = 0

u(x, 0) = r(x),
∂u(x, 0)

∂t
= s(x), v(0) = v, v̇(0) = v̇0 (19)

where r(x) and s(x) are the initial displacement and velocity distributions
of the rod, and the viscous dissipative terms of the system are assumed to
be of O(ε).

Assuming proportional viscous damping distribution for the rod (its
discretized viscous damping matrix is chosen as D = α1M , where M is
the mass matrix of the discretized finite element model of the rod with
α1 = 0.005 (22)), and parameters ε = 0.05, C = 1, L = 1, ω0 = 1, λ2 = 0.2,
a specific damped transition of this system is depicted in Figure 8. The
initial conditions for the damped response are given by:

v(0) ≈ −0.1650
u(x, 0) ≈ 0.1052 sin(x

√
ω2 − ω2

0) cosωt+ 0.000988×

sin(x
√

9ω2 − ω2
0) cos 3ωt+ 0.17536 sin(x

√
25ω2 − ω2

0) cos 5ωt |t=0 (20)

This specific set of initial conditions corresponds to initiation of the tran-
sient dynamics at the point of the FEP with dominant frequency ω =
2.214 rad/s≈ ω4/5 (where ω4 is the fourth eigenfrequency of the rod with
no attachment) on a subharmonic tongue (cf. Fig. 8c). Hence, the damped
transition initially (Regime I cf. Fig. 8c) possesses two dominant har-
monic components at frequencies ω4 (the dominant harmonic of the rod)
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and ω4/5 (the dominant harmonic of the nonlinear attachment), but as
energy decreases due to damping dissipation, multi-frequency transitions
occur. Indeed, there is a high-energy transition from the initially excited
subharmonic tongue to a prolonged 1:3 subharmonic transient resonance
capture (Regime II), as signified by the presence of strong harmonics at
frequencies ω1/3 and ω1. This high- to low-frequency transition results in
relatively large amplitudes of the nonlinear attachment as targeted energy
transfer (21) from the rod to the attachment takes place. Finally, there is
a final low-energy transition to a linearized state of the dynamics (Regime
III), where the response of the nonlinear attachment is negligible, and the
dynamics is dominated by the response of the linear rod.

In Figure 9 we present the EMD analysis of the rod end response. There
are two dominant, near-orthogonal mono-component IMFs. The superpo-
sition of these IMFs accurately reconstructs the rod end response (cf. Fig.
9c). Moreover, the instantaneous frequencies of the dominant IMFs coincide
with the dominant harmonics of the wavelet transform spectra of the rod
end response. The two dominant IMFs possess nearly constant frequencies
identical to the first and fourth eigenfrequencies of the rod with no attach-
ment, which correlates with the representation of the wavelet spectrum of
this damped transition on the FEP (cf. Fig. 8c).

In Figure 10 we depict the IMFs together with their instantaneous fre-
quencies of the response of the nonlinear attachment. Similar to the re-
sponse of the end of the rod, this response possesses two dominant IMFs
that accurately reconstruct the computed time series. In this case, how-
ever, the first dominant IMF possesses a nearly constant frequency equal
to one-fifth of the fourth eigenfrequency of the rod with no attachment,
whereas the second IMF possesses a slowly varying eigenfrequency which
ends up ’locking’ to one third of the first eigenfrequency of the rod in the
time interval 250 < t < 500. Again, these results correlate with the damped
transitions depicted in the FEP of Figure 8c.

Based on the EMD results we wish to perform system identification and
reduced order modeling of the described strongly nonlinear modal interac-
tions between the rod and the nonlinear attachment, by relying solely on
direct analysis of the computed time series. Considering first the rod end re-
sponse we note that this response can be modeled by a system of uncoupled,
forced linear oscillators, termed intrinsic modal oscillators IMOs:

ü1 + λu

4 u̇1 + ω2
4u1 ≈ Λu

4 (t)e
jω4t + cc

ü2 + λu

1 u̇2 + ω2
1u2 ≈ Λu

1 (t)e
jω1t + cc (21)

where cc denotes denotes complex conjugate. The inhomogenous (forcing)
terms in (21) are in the form of ’fast’ oscillating terms ejωkt, k = 1, 4
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modulated by the ’slowly’ varying complex amplitudes Λu

k
(t), k = 1, 4;

moreover, we have assumed that the modulations Λu

k
(t) vary much slower

than the corresponding carrying signals ejωkt. We considered this form of
reduced-order model for the rod end response, so that the response of each
of the two IMOs (21) reproduces approximately one of the dominant IMFs
of the dynamics of the rod end (cf. Figure 9). Since the superposition of
the IMFs reconstructs the original time series, the same result should hold
for the combined response of the IMOs in (21). The specific forms of the
inhomogeneous (forcing) terms in (21), i.e., as modulated periodic signals,
are dictated by the realization that any alternative type of excitation would
be off-resonance and, hence, their effects on the rod dynamics would be
small, of a secondary nature.

Following similar reasoning and taking into account that the damped
response of the nonlinear attachment possesses two dominant fast frequen-
cies approximately equal to ω4/5 and ω1/3, we construct the following ap-
proximate reduced-order model for the damped dynamics of the nonlinear
attachment:

v̈1 + λv

4 v̇1 + (ω4/5)
2v1 ≈ Λv

4(t)e
j(ω4/5)t + cc

v̈2 + λv

1 v̇2 + (ω1/3)
2v2 ≈ Λv

1(t)e
j(ω1/3)t + cc (22)

Again, each of the two IMOs in (22) reproduces approximately a dominant
IMF of the response of the nonlinear attachment (cf. Fig. 10). In particu-
lar, the first IMO models the initial stage of the response of the nonlinear
attachment, i.e., the initial 1:5 transient resonance capture of the damped
dynamics (Regime I), whereas the second IMO models the second (delayed)
1:3 transient resonance capture (Regime II).

Considering now to the reduced-order models (21) and (22), we com-
pute their damping coefficients and inhomogeneous terms by imposing the
requirement that each of the IMOs in (21) and (22) reproduces a dominant
IMF of the rod end or the nonlinear attachment responses, respectively.
To demonstrate this analytical computation we consider an IMO with the
general form:

ÿ + λẏ + ω2y ≈ Λ(t)ejωt + cc (23)

where Λ(t) is a slow (complex) modulation of the fast periodic signal ejωkt.
We analyze the dynamics of (23) by performing a slow/fast partition of the
dynamics (21), introducing the new complex variable g(t) = ẏ(t) + jωy(t),
and expressing the real dependent variable and its derivatives as,

y(t) =
g − g

2jω
, ẏ(t) =

g + g

2
, ÿ(t) = ġ − jω

2
(g + g) (24)
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where overbar denotes complex conjugate. Then, (23) is expressed as,

ġ(t)− jωg(t) + (λ/2) [g(t) + g(t)] = Λ(t) (25)

a relation that is exact up to this point. We now introduce a slow-fast
partition of the response of (25) in the form g(t) = φ(t)ejωt, where φ(t) is
a slow complex modulation (amplitude). Substituting this expression into
(25) and performing averaging with respect to the fast frequency ω we derive
the following approximate complex modulation equation governing the slow
evolution of the amplitude φ(t) and relating it to the forcing modulation
Λ(t):

φ̇(t) + (λ/2)φ(t) = Λ(t) (26)

This key result provides a means of for estimating (identifying) the slowly
varying forcing term Λ(t) and the damping coefficient λ in the IMO (23),
if the slow modulation of its response is experimentally or computationally
given. Indeed, assuming that the response of the IMO (23) is approximately
equal to one of the corresponding dominant IMFs c(t) derived by EMD of
the measured time series, we may regard φ(t) as the slow component of the
complexification Ψ̂(t) ≡ c(t) + jH [c(t)] of that IMF (where H [•] denotes
Hilbert transform). The slow component of the complexification Ψ̂(t) is
then computed by means of the previously discussed expressions (7) and
(8) providing its amplitude and phase. Assuming that the IMF possesses
the dominant (’fast’) frequency ω, we may then express the complexification
of the IMF in the polar form,

Ψ̂(t) = Â(t)ej[θ̂(t)−ωt]︸ ︷︷ ︸
Slow component

ejωt︸︷︷︸
Fast component

(27)

where Â(t) = {c2(t) +H [c(t)]2}1/2, tan θ̂(t) = H [c(t)]/c(t) and ω̂(t) =
˙̂
θ(t).

It follows that the slow modulation φ(t) can be approximated as,

φ(t) ≈ jωÂ(t)ej[θ̂(t)−ωt] (28)

where the factor jω accounts for the slightly different definitions of the
complex variables g(t) and Ψ̂(t). Relations (26-28) can be used to deter-
mine the complex modulation Λ(t) of the forcing term of the IMO (23),
once its damping coefficient λ is estimated through an optimization proce-
dure (i.e., by requiring that the response of the IMO best approximates its
corresponding IMF).

By the outlined procedure we can derive local reduced-order models
identifying a specific such as the one presented in Fig. 8). Indeed, applying



www.manaraa.com

Elements of Nonlinear System Identification of Broad Applicability 309

it to the IMOs (21) and (22) we estimated the slow forcing modulations
Λu,v

1,4 (t). The results are depicted in Figures 11 and 12 for corresponding
optimized damping coefficients λu

4 = 0.18, λu
1 = 0.4, λv

4 = 1, and λv
1 = 1.2.

In essence, the forcing terms Λu,v
p

(t)ejωpt in (21) and (22) represent nonlin-
ear modal interactions quantifying transient energy exchanges between the
dominant harmonics of the rod end and attachment responses, as well as
the time windows where these exchanges occur. The responses of the IMOs
reproduce all the dominant IMFs, so by superimposing we can reproduce
the measured nonlinear time series. As an example, the comparison of the
IMFs to the responses of the repespective IMOs for the nonlinear attach-
ment are shown in Figure 13. The early- and later-time discrepancies can
be attributed to the temporal variations of the dominant frequencies of the
nonlinear attachment in these regimes of the dynamics in Regimes I and III
(cf. the wavelet spectrum of Fig. 8c), which was not taken into account in
the IMOs (22), since, for simplicity, fixed eigenfrequencies were assumed.

In summary, employing the local aspect of the NSI methodology we are
able to identify the nonlinear temporal energy exchanges between the rod
and the attachment and the precise time scales (frequencies) at which these
interactions occur. This represents multi-scale system identification of the
nonlinear dynamics.

We now provide an application for the global aspect of the NSI method-
ology, by showing partial reconstruction the main features of the FEP of a
dynamical system under the assumption of weak dissipation. This is per-
formed by considering different damped nonlinear transitions initiated at
different energy levels which resemble ’hammer tests’ used in traditional
experimental modal analysis.

Considering a specific weakly damped transition, we first perform EMD
and identify the dominant IMFs corresponding to that transition. The

instantaneous frequency of an identified dominant IMF, say c
(m)
k

, can be

computed directly through relations (7-9) as, ω̂
(m)
k

(t) =
˙̂
θ
(m)
k

(t). The corre-
sponding instantaneous ’energy’ of the IMF (i.e., at each time instant of the
damped transition) can be expressed as a sum of kinetic and potential ener-

gies, Ê
(m)
k

(t) = 1/2
[
ċ
(m)2

k
(t) + ω2

m
c
(m)2

k
(t)

]
. If the mass distribution for the

system is known, then the instantaneous mechanical energy of the system
can be estimated as a summation of the ’energies’ of the IMFs multiplied
by appropriate mass factors,

Etotal(t) = η

n∑
k=1

N∑
m=1

mkÊ
(m)
k

(t) (29)

where the weighting coefficients mk correspond to the mass distribution
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of the system among components (it can de deduced from the physical
configuration of the system), and η is a factor used to match the exact initial
conditions of the damped transition with the approximate initial conditions
satisfied by the IMFs (this can be directly deduced from the measured time
series). If the system is linear then η = 1, so η > 1 accounts for the energy
of the nonlinear terms. Using these expressions a partial construction of the
FEP can be made (corresponding to the considered transition) and a global
picture of the dynamics can be gained. By considering different nonlinear
transitions we can construct different regions of the FEP and perform global
identification of the dynamics over broad frequency and energy ranges.

As a demonstration in Figure 14 we provide a partial reconstruction of
the FEP for the strongly nonlinear system of coupled oscillators (18). In
this case, the mass distribution of the system is m1 = 1 (linear oscillator)
and m2 = ε = 0.05 (nonlinear attachment), and the correction factor is
computed as η = 1.5. The FEP reconstructions are performed using two
specific damped transitions (6) and the instantaneous frequency and energy
estimates derived above.

6 Conclusion

The discussed NSI methodology is based on post processing of measured
time series and holds promise of broad applicability to dynamical systems
with weak or strong nonlinearities and time-invariant or time-variant pa-
rameters. In addition, it appears as conceptual extension of classical ex-
perimental modal analysis EMA. Indeed, whereas in EMA one constructs
reduced-order models in the frequency or temporal domains in terms of
bases of orthogonal vibration modes, in the discussed NSI methodology one
deals with measured time series (which eliminates the need of frequency
analysis a basic limitation when one performs nonlinear dynamic analy-
sis) and decomposes them in terms of nearly orthogonal, approximately
monochromatic IMFs resulting from EMD. Instead of classical Fast Fourier
Transforms used in EMA, the NSI considers wavelet transforms that pro-
vide not only the frequency components of the measured signals but also
the temporal variation of these components due to non-stationary effects.
Moreover, instead of considering the dynamics in the frequency domain (as
in EMA), in NSI one considers frequency energy plots which enable study
of the dynamics for changes in forcing levels and initial conditions. The
use of such tools addresses the basic feature of nonlinear systems that their
dynamics depend on the energy level (which does not occur in linear theory).

Among the current challenges that need to be addressed concern the
development of data-driven reduced order models in multi-physics prob-
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lems using the NSI methodology, of identifying and modeling non-smooth
structural dynamics including the effects of clearance and friction, to ex-
tend the NSI methodology to systems with closely spaced modes exhibiting
beat phenomena (a first step towards addressing the issue is considered
in (9) or modes with slowly varying fast frequencies, and to wave-related
applications. Finally, there is the need to extend the discussed discrete
reduced-order models to distributed-parameter systems by adding a addi-
tional spatial dimension to the analysis.
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Figure 3. FEP of system (3) (19; 20; 21).
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Figure 4. Transient responses of the linear oscillator (a), and the nonlinear
oscillator (b) (19).

Figure 5. Contours of wavelet transforms (WT spectra) of the transient
responses of the linear oscillator (a), and the nonlinear oscillator (b) (19).
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Figure 6. WT spectra of the relative response y(t)− v(t) superimposed on
the FEP (19).

Figure 7. Elastic dissipative rod with essentially nonlinear end attachment
(22).
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Figure 8. Highly complex damped transition: (a) Response of the rod, (b)
response of the attachment, (c) depiction on the FEP of the relative rod
end-attachment response (22).
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Figure 9. EMD analysis of rod response: (a) 1st IMF and its instantaneous
frequency superimposed on the WT spectrum, (b) 2nd IMF and its instan-
taneous frequency superimposed on the WT spectrum, (c) reconstruction
of response by superimposing the two leading (dominant) IMFs (22).
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Figure 10. EMD analysis of the response of the nonlinear attachment: (a)
1st IMF and its instantaneous frequency superimposed on the WT spec-
trum, (b) 2nd IMF and its instantaneous frequency superimposed on the
WT spectrum, (c) reconstruction of response by superimposing the two
leading (dominant) IMFs.
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Figure 12. Magnitudes of slow forcing modulations of the IMOs of the
nonlinear attachment response at frequencies ω4/5 and ω1/3 (22).

Figure 11. Magnitudes of slow forcing modulations of the IMOs of the rod
end response at frequencies ω4 and ω1 (22).
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Figure 13. Comparison between the IMOs (22) and the IMFs of the re-
sponse of the nonlinear attachment: (a,c) first and second dominant IMF
compared to the first and second IMO; (b,d) slow amplitudes of (a,c) (22).
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Figure 14. Global identification on the FEP of system (18) based on fre-
quency and energy estimates from identified IMFs (6).
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Abstract These notes correspond to two lectures given by Bruno

Cochelin at the CISM course on “Modal Analysis of Nonlinear Me-

chanical Systems” held at Udine, from 25 to 29 june 2012. The first

part is devoted to describe experimental results obtained by Romain

Bellet to analyse Target Energy Transfer (T.E.T.) between a thin

visco-elastic membrane and an acoustic medium. This study paves

the way for a new technic of passive sound control in the low fre-

quency regime, where no effective dissipative material exists. Then,

an overview of several extentions and applications of the T.E.T.

concept in acoustics is given. All these results have been obtained

with the collaboration of R. Bellet, S. Bellizzi, R. Côte, P. Herzog,

R. Mariani., P.O. Mattei and J. Shao.

1 INTRODUCTION

For reducing the level of noise and vibrations that arises in many engi-
neering applications, it is often made use of specific devices called dynamic
absorber or absorber. In acoustics, classical absorbers are porous mate-
rials for high frequency and Helmholtz resonators for low frequency. In
mechanics the most popular device is tuned mass-damper system known
as the Frahm absorber. Most of these absorbers are linear devices that
rely on the anti-resonance concept. In recent theoretical and experimental
works Gendelman et al. (2001); Vakakis and Gendelman (2001); McFarland
et al. (2005); Gourdon et al. (2007); Nucera et al. (2008), it has been de-
montrated that the use of a pure nonlinear absorber, i.e. a mass with an
essentially nonlinear spring, can be an interesting alternative solution for
reducing vibrations. Such absorbers work on the resonance capture phe-
nomenon Vakakis (2001); Kerschen et al. (2005) and they differ radically
from the classical linear ones. The principle is to put the absober in a sit-
uation where an irreversible transfer of vibrational energy occurs from the
primary linear system to the absorber. This energy is finally dissipated by
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damping in the absorber. The result is an efficient cancellation of the vibra-
tion in the linear system, since the motion gets localized in the absorber.
That phenomenon is called targeted energy transfer in the literature. An
interesting feature of such nonlinear aborber is to operate in a given fre-
quency band, instead of a single frequency for a classical Frahm absorber
or Helmholtz resonator. Indeed, it is worth noting that, since the spring of
the absorber is essentially nonlinear without linear contribution, this system
has no natural frequency. A drawback of the nonlinear absorber is that the
irreversible transfert of energy occurs only when the primary linear system
has reached a certain value of vibrational energy. This can be a limitation
for practical applications. More details on the theory and on the pros and
cons of such non linear abdorbers can be found in a recent book by Vakakis
et al. (2008).

In the following notes, the primary linear system to be protected is an
acoustic medium. We investigated the possiblity to design new kind of
acoustic passive absorbers that could be efficient for low frequency regime,
for loud transient noises or loud broad band noises. The nonlinear absorber
is a thin viscoelastic membrane that is connected to the acoustic medium
and that performs very large amplitude oscillations, i.e. the amplitude of the
excursion is very large as compared to the thickness of the membrane. The
principle of the experimental set-up and the associated model will be firstly
introduced. Then experimental results will be presented, that is to say the
different observed regimes under sinusoidal forced excitation, the transient
responses of our system and the different kind of frequency responses. This
first experimental verification of energy pumping in acoustics is a first step
toward the design of new generation of passive acoustic absorbers. We end
these notes by a discussion on several research efforts made to extend the
performances and to find applications.

2 EXPERIMENTAL SET-UP AND ASSOCIATED

MODELS

2.1 The classical 2 d.o.f. mechanical system

To analyse the targeted energy transfer, many authors have used simple
mechanical systems with two degrees of freedom. A mass and a linear
spring stand for the linear system that has to be protected. A mass with an
essentially nonlinear spring and a damper stand for the dynamic absorber.
A coupling spring connects the two oscillators as shown in figure 1. Because
the nonlinear oscillator is connected to the ground, this configuration is
refered to as the grounded configuration. Target energy transfert typically
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occurs when the mass of the nonlinear system is of the same order as the
mass of the linear oscillator and when the stiffness coupling between the
two oscillators is small.

linear oscillator nonlinear oscillator

u1(t) u2(t)

Figure 1. The classical 2 d.o.f. mechanical system used to study the energy
pumping phenomenon.

Let u1(t) and u2(t) be the displacement of the masses, and assuming
a cubic restoring force for the nonlinear spring, the governing equations
(nondimentional form) of that grounded configuration are :

ü1 + au̇1 + u1 + b(u1u2) = 0
cü2 + du̇2 + eu3

2 + b(u2u1) = 0
(1)

where b is the small coupling coefficient, c the mass ratio, a and d respec-
tively the damping factors in the tube and in the nonlinear oscillator and
e the cubic stiffness coefficient. Despite its simplicity, such a system has a
very complex dynamic that has been thouroughly investigated in Lee et al.
(2005); Starosvetsky and Gendelman (2008); Vakakis et al. (2003); Gendel-
man et al. (2005); Gendelman and Lamarque (2005). It should be added
that these references deals with the non-grounded configuration, where a
small mass is directly connected to the linear mass by the cubic spring.
This does not matter since the behaviours of the grounded and the non-
grounded configuration are very similar.

2.2 The vibro-acoustic experimental set-up

Our aim is to experimentaly reproduce the pumping phenomenon in a
system where the linear oscillator is an acoustic medium. So we replace
the linear mechanical oscillator by the air vibrating on the first acoustic
mode in a tube, the coupling stiffness by the air in a coupling box and the
nonlinear oscillator by a thin visco-elastic membrane as presented on figure
2. The experimental set-up based on these ideas and shown in figure 3 has
effectively allowed to observe the targeted energy transfer (energy pumping)
phenomena from the acoustic medium to the visco-elastic membrane.
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m air m mem

ua(t) qm(t)

m air

−ua(t)

p1(t) p2(t)

p(t) , u air (t)

qm(t)

0 L
x

Loud-speaker

Tube

Membrane

Coupling box

Figure 2. Principle of the set-up.

Practically, the tube (linear system) is an interchangeable U-tube so that
its length L can vary between 1.5 and 2.5 m. The first resonance frequencies
corresponding to these lengths are then between 75 and 120 Hz. Since the
diameter of the tube d = 0.094 m is small as compared to L, it does not
matter if the tube is straight or U-shape. The volume of the coupling box is
V2 = 27 10−3 m3. The device which holds the membrane allows to change
the diameter of the working part from 4 to 8 cm. A sliding system permits
to apply a constant in-plane pre-stress in the membrane. Once the pre-stress
is set, the membrane is clamped to the supporting device. Concerning the
material, we use both latex and sillicone, with a Young modulus of about
1.4 MPa, and a density of about 1000 kg.m3. Finally, various thicknesses
h between 0.18 and 1 mm have been tested. For the excitation of the tube
(linear system), we use an acoustic source that consists in a loudspeaker and
a coupling box which is connected to the other end of the tube. An analyser
controls the excitation and collects two measurements: the acoustic pressure
at the middle of the tube (microphone) and the velocity of the center of the
membrane (laser vibrometer).

2.3 Associated models

A continuous model can be obtained by taking Helmholtz equation for
the air contained in the tube, and the nonlinear plate equation of the Von
Karman type for the thin membrane. A Kelvin- Voigt model is adopted
to account for the viscosity in the membrane : the Piola-Kirchhoff second
stress tensor S is related to the Green-Lagrange strain tensor E and strain
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Figure 3. Photograph of the set-up. The membrane (in green) is supported
by a device that allows to change the diameter and the pre-stress.

velocity tensor Ė by S = D : (E + ηĖ), whereD is a classical fourth order
Hooke elastic tensor and η is the damping factor. As a first approximation,
the continuous model can be reduced to a two degrees of freedom system
by taking uair(x, t) = ua(t)cos(

πx

L
) for the air in the tube (first undamped

mode), and w(r, t) = qm(t)(1−( r

R
)2) for the transversal displacement of the

circular membrane (parabolic shape function). The two coordinates ua(t)
and qm(t) respectively correspond to the displacement at the end of the
tube and at the center of the membrane. In the coupling box, the pressure
is considered as spatially uniform. It is related to the volume variation by
p2 = ρac

2
0
ΔV2

V2

with ΔV2 = ua(t)St− qm(t)Sm

2 Applying a classical Galerkin
method and adding a forcing term, we get the following reduced system :

maüa + cf u̇a + kaua + Stkb(Stua
Sm

2 qm) = F cos(Ωt)
mmq̈m + k3(q

3
m
+ 2ηq2

m
˙qm + Sm

2 kb(
Sm

2 qm − Stua) = 0
(2)

with

ma = ρaStL

2 , ka =
ρaStc

2

0
π
2

2L , mm = ρmSmh

3 ,

k3 = πEh

3(1−ν2)R2 , kb =
ρac

2

0

V2

,
(3)

where h, R, Sm and ρm are the membrane thickness, radius, section and
density, L and St are the tube length and section, V2 is the volume of the
coupling box, E the Young modulus of the membrane, ρa the density of the
air and c0 the sound speed. System (2) is then similar to (1) except for the
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dissipative term which is here nonlinear, because of the geometrical non-
linearity in the membrane. Since the membrane performs large amplitude
oscillations, the linear stiffness of the membrane has been neglected.

3 EXPERIMENTAL RESULTS

On figures 4, 5, 6, 7 and 8 , the first channel is the signal of the sinsoidal
forcing send to the loudspeaker, the second channel is the acoustic pressure
measured at the middle of the tube and the third channel is the velocity of
the center of the membrane.

3.1 Different regimes under sinusoidal forcing
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Figure 4. Low excitation amplitude (regime 1): periodic regime localized
on the tube. Input voltage : A = 0.29 V.

We are interested in this part in the behaviour of the system under si-
nusoidal excitation, at the frequency of the first acoustic mode of the tube.
Due to the presence of a non-linearity, several behaviors are observed de-
pending on the level of the excitation. In this part, the set-up configuration
is : L = 2m, h = 0.4 mm, R = 3 cm, f1 = 62 Hz. When the excitation
level is below the threshold S1, the observed regime (regime 1) is periodic
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(figure 4) and vibrational energy is localized on the tube where the noise
level is important while the membrane is inactive and has small vibrations.
Moreover, on that regime, the displacement of the air at the end of the tube
ua and the displacement of the center of the membrane qm are simultanous
on the same frequency and almost out of phase. If the excitation level is
high and more important than a second threshold S2, the regime (regime
2) is also periodic but the energy is now localized on the membrane which
vibrates with large amplitudes (figure 6). On that regime, ua and qm are
still synchronous at the same frequency, but they are now almost in phase.
A resonance capture has occured between the tube and the membrane. This
is the phenomenon which is at the heart of the energy pumping . These
regimes are actually directly connected to two different nonlinear normal
modes of the system, as detailled in Bellet et al. (2010). Between these two
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Figure 5. Intermediate excitation amplitude : quasi-periodic regime. Input
voltage : A = 0.51 V.

thresholds, the regime is quasi-periodic and the system bifurcates alterna-
tively from one regime to the other (figure 5). Indeed during the sound
establishment, the motion is on the regime 1. Then the sound pressure in
the tube reaches a certain level corresponding to the threshold S1 which
makes the system bifurcating on the regime 2 and the membrane capturing
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the resonance of the tube. Then the membrane starts vibrating with a great
amplitude and the noise level in the tube decreases quickly. The energy is
irreversibly transfered from the tube to the membrane and the membrane
acts as a nonlinear energy sink (NES). This is during this phase that we
talk about energy pumping or targeted energy transfer. At the end of this
transfer, the noise level reaches an energy level too low for the regime 2
and the system bifurcates on the regime 1 where the acoustic pressure will
grow again and reproduce indefinitely the same cycle. We should add that
this figures show an important drawback of the energy pumping: the value
of the threshold is very high (depending on the configuration, the mem-
brane is activated if the sound in the tube reaches a threshold between 130
and 160 dB) and represents at the moment an important limitation of the
phenomenon.
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Figure 6. High excitation amplitude (regime 2): periodic regime localized
on the membrane. Input voltage : A = 0.59 V .

3.2 Free oscillations

Since the energy pumping is an intrinsically transient phenomenon, this
part deals with the behavior of the system under free oscillations with the
configuration : L = 2m, h = 0.6 mm, R = 3 cm,f1 = 57 Hz. Experimen-
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tally, the loudspeaker can not produce a powerful enough pulse to activate
the energy pumping. As a transient response, we observe then the free os-
cillations of the system after a sinusoidal excitation suddenly stopped. If,
at that initial instant of the free oscillations, the system vibrates on the
regime 1 (for low excitation amplitude), then the sound extinction in the
tube follows a natural exponential decrease (figure 7) and the NES is in-
active. But, if at the initial instant the system vibrates on the regime 2
(high excitation amplitude), then the sound exctinction in the tube follows
a quasi-linear decrease, much faster than the exponential one, during which
the membrane still vibrates with a great amplitude until the almost com-
plete cancellation of the sound in the tube (figure 8). During this phase, a
targeted energy transfer occurs from the tube to the membrane : the NES
quickly captures the resonance of the tube, localizes on it the energy of the
acoustic medium and then damps it by viscosity in the membrane and also
here, but in a negligible part, by acoustic radiation outside of the set-up.
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Figure 7. Free oscillations with low energy initial conditions: observation of
an exponential decrease for the acoustic pressure. Input voltage: A=0.5 V.

Thanks to the model previously presented, we can define and compute
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Figure 8. Free oscillations with high energy initial conditions: observation
of a quasi-linear decrease for the acoustic pressure. Input voltage: A=3.7 V.

the energy of the different elements of the system :

Etube =
1
2mau̇a

2 + 1
2kau

2
a

Emembrane =
1
2mm ˙qm

2 + 1
2k3q

4
m

Ebox = 1
2kb(Stua

Sm

2 qm)2

Etotal = Etube + Emembrane + Ebox

(4)

Then the figures 9 and 10 show the evolution of the energy and the
pourcentage of energy in the tube and of the membrane computed with
the time series as given in figures 7 and 8 . It appears clearly that in the
first case (figure 9) the energy remains always localized in the tube, the
membrane never acts. But in the second case (figure 10), the energy is
totally transfered to the membrane which localizes quickly almost 100% of
the energy of the system.

3.3 Frequency responses

After presenting the temporal behaviour of the system during and after
a single harmonic excitation, let us look at the behavior of that acoustic
medium coupled to a membrane in the frequency domain. Because of the a
non-linearity, we cannot talk about transfer function as the behaviour of the
system depends on the amplitude of excitation. Indeed as we see in figure 11,



www.manaraa.com

Acoustic Mitigation 335

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4
x 10

3

E
n

er
g

y 
(J

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

20

40

60

80

100

Time (s)

E
n

er
g

y 
(%

)

E
tube

 / E
total

E
membrane

 / E
total

E
tube

E
membrane

Figure 9. Evolution of the energy in the tube and the energy of the mem-
brane for the time series of figure 7.
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there are several kinds of frequency responses. The set-up configuration here
is: L = 2.22 m,h = 0.18 mm, R = 4 cm, f1 = 45 Hz. This figure shows the
experimental normalized values of the amplitude of the acoustic pressure in
the tube divided by the amplitude of excitation during sweeps in frequency
at constant amplitudes. When the level of excitation is lower than S1, the
membrane remains inactive during the entire sweep and the result is simply
the resonance peak of the tube. For a level between S1 and S2, a clipping of
the peak appears. For frequencies below 85 Hz and above 90 Hz the sound
level in the tube is too low to activate the energy pumping and frequency
response is identical to that obtained for low levels. But between those
frequencies, the level becomes important enough to set the system on the
quasi-periodic regime corresponding to the energy pumping and that creates
a clipping of the peak. In that frequency range, energy pumping prevents
sound pressure from exceeding a certain level. Outside of that range, the
presence of the absorber is transparent. When the excitation level is higher
than S2, we observe a frequency response with an other resonance peak
whom the resonance frequency is smaller than the resonance frequency of the
tube and whom maximal amplitude is slightly lower than the amplitude of
the resonance peak of the tube. In a noise reduction context, this frequency
response is obviously much less interesting than the clipping peak produced
by energy pumping, but as we can see, that phenomenon cannot appear
with too strong levels.
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Figure 11. Frequency responses for different amplitudes of sweep sinus
forcing.
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3.4 Discussion

Amore complete description of the set-up, of the model and of the T.E.T.
analysis between the visco-elastic membrane and the acoustic medium can
be found in Bellet et al. (2010). The link between T.E.T. and the non-
linear modes of the underlying conservative system is discussed, and the
important self-tunning property of the membrane absorber is also demon-
strated. A further experimental analysis using not only one but several
nonlinear membrane absorbers on the coupling box is presented in Bellet
et al. (2012). It is shown that using more membranes is a good way to en-
hance the robustness and the efficiency of the T.E.T. thank to an additive
effect of each membrane which are activated in turn and which behaves rel-
ativement independentely. This finding allows to think of acoustic aborbing
panel containing many small membranes having random characteristics.
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Figure 12. From left to right and top to bottom: The loudspeaker. Sur-
round detail. Force displacement diagramm. Clippling of a resonance peak
by adjusting the moving mass

Another experimental study of T.E.T in acoustic has been performed by
Mariani et al. (2011). Instead of a membrane, a loudspeaker (suspended
piston) working outside its usual linear regime plays the role of the non-
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linear absorber. The main advantage of this alternative technology is the
possibility to adjust independently the parameters. For example, the mass
of the absorbers can be easilly augmented by gluing small masses on the
moving part of the loudspeaker and the damping can be also adjusted elec-
tronically. Another very important point is the perspective to harvest the
transfererd energy instead of dissipating it. On the the three loudspeakers
used in Mariani et al. (2011) is presented in figure 12, with its nonlinear
(static) force-displacement response and an example of mass adjustement
for clipping a resonance peak.

In all these experiments, the acoustic medium was a one dimensionnal
tube and a large coupling box was always used between the membrane
and the tube. In order to extend the concept to more applications, Shao
(2012) has considerer the T.E.T. between a 3D acoustic cavity and several
membranes that are mounted directly on the wall of the cavity, without any
coupling box. In that case, the weak coupling between the membrane and
an acoustic mode is obtained by a correct placement of the membrane with
respct to the acoustic modal shape. The design of these acoustic absorbers
has been invetigated and tested numerically. Finally, the analysis of a two
d.o.f. acoustic tube system coupled to a membrane aborber and sumitted to
a two frequency excitation has been investigated by Bellizzi et al. (2013a,b).

We end here this overview of various research studies on acoustic T.E.T.
that have started at the LMA in Marseille, after the pionneer results ob-
tained on a simplifed set-up by Cochelin et al. (2006).
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